

Activity 2.1

A database of existing icebreakers in the world

Authors:

Harri Eronen, ILS OY

Leena Vedenpää ILS OY

5.6.2014

"The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Table of contents

Intro	oduction	1	2
Sι	ımmary	of the contents	2
1.	List of ic	cebreakers, icebreaking supply ships and ice capable research/patrol ships worldwide	e 4
2.	Summa	ry of vessels suitable for Baltic Sea icebreaker use	4
3.	Conside	erations of the suitability of different vessel types for Baltic icebreaker use	5
3.	1. Ger	neral analysis on the requirements for Baltic icebreakers	5
	3.1.1.	Winter Navigation system	5
	3.1.2.	The composition of icebreaker fleet	5
	3.1.3.	Environmental issues	8
3.	2. Sur	mmary of different icebreaker types suitability for Baltic Sea use	10
	3.3.1.	Icebreakers and icebreaking supply vessels under construction	13
Dofo	roncoci		1 /

Introduction

This report is a part of a larger WINMOS project that is co-financed by the European Union. The main objective of the WINMOS project is to ensure sustainable and efficient maritime transports all-year-around and diminish the barrier caused by the sea ice in the Baltic Sea. The project consists of a number of measures that are needed today and within the following years, but also measures that are needed in order to make strategic decision for the period 2020-2030.

The ultimate goal of activity 2 is to obtain knowledge of different icebreaker concepts to optimize the composition of a possible jointly operated icebreaker fleet between the Baltic Sea countries, especially Estonia, Finland and Sweden. The actions of this activity include the model tests of the Urho/Atle-class and the development of new icebreaker concepts for the Baltic Sea icebreaking needs and then compare them with the Urho/Atle-class.

Operational requirements of icebreakers vary between sea areas and assisted traffic and on the other hand there are various existing and new concepts for icebreaking ships. Thus, in sub activity 2.1, the world's icebreaker and icebreaking supply vessel fleet was studied and documented. The vessels suitable for the Baltic Sea icebreaking assistance conditions were studied further and the technical parameters of those ships were documented. The icebreaking needs of the Baltic Sea are presented along with an icebreaker categorization.

Summary of the contents

This report is divided into following main sections:

1. List of icebreakers, icebreaking supply ships and ice capable research/patrol ships worldwide

- List presented in table format gives the main dimensions and the ice going capability of each vessel
- o The list includes both existing ships and ships under construction

2. Summary of vessels suitable for Baltic Sea icebreaker use

This section contains:

- o List of vessels suitable for the Baltic Sea use selected from worldwide list of vessels
- o Datasheets of these vessels including general arrangement and lines drawing if published

3. Considerations of the suitability of different vessel types for Baltic Sea icebreaker use

3.1 General analysis on the requirements for Baltic Sea icebreakers

- o Winter Navigation system
- The composition of icebreaker fleet
- o Environmental issues

3.2 Summary of different icebreaker types suitability for Baltic Sea use

- Existing vessel performance/efficiency compared to requirements for Baltic Sea use
- Summary of suitability of different existing ships and ships under construction for Baltic use
- o Icebreakers and icebreaking vessels under construction

1. List of icebreakers, icebreaking supply ships and ice capable research/patrol ships worldwide

A list of icebreakers, icebreaking supply ships and ice capable research/patrol ships of the world was compiled and can be found attached to this report. The list includes main parameters of the ships and their ice-going capabilities. Note also that the list is as exhaustive as possible, but there can still be some vessels missing or some errors in the figures. See attachment 1 for the list. (ILS, 2011)

2. Summary of vessels suitable for Baltic Sea icebreaker use

Of the complete set of icebreakers, icebreaking supply vessels and ice capable research/patrol ships in the world, those that would be suitable to the Baltic Sea conditions were selected for further analysis. (Also Baltic multipurpose icebreakers Fennica, Botnica, Tor Viking, Eva 316 and the new Finnish icebreaker under construction were included as yardstick vessels.) Of these vessels, technical data was collected to individual datasheets of the vessels. These datasheets can be found attached to this report (attachment 2). The vessels for which a datasheet is available are:

- Existing:

Akademik Fedorov Akademik Tryoshnikov

Araon
Arctik Ivik
Brage Viking
Botnica
EVA-316
Fennica

Fesco Sakhalin

Healy Louhi Mackinaw Moskva

Pacific Endeavour Polar Pevek Robert Lemeur

Svalbard

Svitzer Sakhalin

Talagi (Canmar Kigoriak)

Toboy

See attachment 2 for the datasheets.

Tor Viking Varandey Vitus Bering Vladimir Ignatyuk Vladislav Strizhov

Under construction:

AOPS Baltika

John G. Diefenbaker

Kemin Karhu

Kronprins Haakon

LK-60 Murmansk

Rescue icebreaker, Russia

Sikuliaq

New Finnish IB

Concepts:

Aurora Slim Chinese project

3. Considerations of the suitability of different vessel types for Baltic icebreaker use

3.1. General analysis on the requirements for Baltic icebreakers

3.1.1. Winter Navigation system

The winter navigation system in Finland and Sweden consists of several interacting factors that are:

- i. Number and capacity of icebreakers escorting all ships fulfilling the traffic restrictions;
- ii. Ice classed merchant ships that have some ice performance;
- iii. Actions of the maritime authorities (traffic restrictions, ice class rules, fairway dues etc.)
- iv. Operators' skill onboard and ashore

The balance that is to be found in this system is between the number of icebreakers, ice performance requirements of merchant ships and the waiting times / turnaround times of merchant ships. If the merchant ships had less ice performance, more icebreakers would be required to keep the turnaround times reasonable and this would push the fairway dues up. The measure of the operability of the winter navigation system is considered to be the average length of waiting time for an icebreaker (this is the average of non-zero waiting times) and at the same time the percentage of ships that are not waiting at all. The average waiting time should be less than 4 hours and more than 90% of ships should not need to wait at all. (ILS, 2012)

3.1.2. The composition of icebreaker fleet

The severity of winter varies around the coast of Baltic Sea. On the Finnish coast, maximum level ice thicknesses vary from about 30 cm in the southwestern sea area to about 80 cm in the northernmost Baltic Sea. The variation along the Swedish coast is even larger as parts of the coast are ice free. The Pärnu Bay and Gulf of Riga ice conditions can vary from ice free up to 50-70 cm of ice. Compression poses challenges for all coastal areas, but especially for the Bothnian Bay, Quark area, Gulf of Finland and Gulf of Riga. It is evident that different sea areas need different types of icebreakers. This is reflected in the present composition of icebreaker fleets: Finland and Sweden have bigger icebreakers that can operate in difficult ice conditions and small icebreaking ships that operate well closer to the ice edge. Estonia has managed well with EVA-316 in the Pärnu Bay/Gulf of Riga area and with the addition of Botnica, the Tallinn region icebreaking needs are also met.

The current icebreaker fleet of Finland, Sweden and Estonia is presented in Table 1. It has to be noted that Sweden's charter agreement for Tor Viking II ends in 2014 and for Balder Viking in 2015.

Table 1. The current icebreaker fleet of Finland, Sweden and Estonia.

Nama	Dolivon	Doom [m]	Dollard aud [+]	Power	P/B	Ice performance	Crew in ice
Name	Delivery	Ream [m]	Bollard pull [t]	P [MW]	[MW/m]	h _i /v [m/knot]	breaking
			Finland	d			
Voima	1954, 1979	18.7	113	10.2	0.55	1.2/2	21
Urho, Sisu	1975, 1976	22.5	185	16.2	0.72	0.8/8.5	21
Otso, Kontio	1986, 1987	23.4	160	15	0.64	0.8/10	20
Fennica, Nordica	1993, 1994	25.2	234	15	0.60	0.8/9.5	21
Zeus	1995	14.6	101	5.4	0.37	-	-
			Swede	n			
Ale	1973	13.0	48	3.5	0.27	-	12
Atle, Frej, Ymer	1974, 1975, 1977	, 22.5	185	16.2	0.72	0.8/8.5	18
Oden	1989	31.2	240	17.7	0.57	1.8/3	18
Tor Viking II Balder Viking,	2000 2001	18.0	200	13.4	0.74	0.6/11	14
			Estoni	а			
Botnica	1998	23.1	117	10	0.43	0.8/8	21
Tarmo	1963	21.2	108	8.8	0.41	0.85/2	-
EVA-316	1980/2005	12.2	45.3	4.4	0.36	0.65/3	-
<u> </u>				1			

The fleet composition is also reflected in the icebreaker categories defined by Finnish authorities for the Baltic Sea icebreaking needs. The categorization is as follows:

- Category A: Icebreaker can assist ships in all difficult ice conditions.
 - Beam, B min = 24 m
 - Power Pmin = 15 MW and must be able to proceed with constant 2 knots speed in
 1.5 m thick level ice
 - Draught T max = 9.0 m
 - Bollard pull = 150 ton
 - Ship must have towing winch and a towing notch.
 - Ship must be able to turn 180 deg at the spot in 0.7 m thick level ice in 3 mins
 - The performance astern must be as close as possible to that forward
- Category B: Icebreaker can assist ship in all less difficult ice conditions.
 - Beam, B min = 17.5 m
 - Power Pmin = 10 MW and must be able to proceed with constant 3 knots speed in
 1.2 m thick level ice
 - Draught T max = 8.0 m
 - Bollard pull = 90 ton
 - Ship must have towing winch and a towing notch.
- Category C: Icebreaker can assist ship in all ice less difficult ice conditions and the archipelago
 - Beam, B min = 12 m
 - Power Pmin = 5 MW and must be able to proceed with constant 3 knots speed in
 0.8 m thick level ice
 - Draught T max = 7.0 m
 - Bollard pull = 70 ton

At present the fleet compositions are as follows:

	Finland	Sweden
Category A	6	4
Category B	2	2
Category C	1	1

The categorization is more suited for the Finnish and Swedish needs, whilst in Estonia the needs of different category ships vary. Of Estonia's icebreakers, Botnica can be categorized as B and Tarmo in C class. EVA-316 does not quite meet the category C requirements, but does well the job for which it is needed in the Pärnu Bay/Gulf of Riga.

3.1.3. Environmental issues

Environmental issues have become even more important in the past years and new regulation has been introduced, such as the Environmental Efficiency Design Index (EEDI). An adequate ice performance of ships requires certain minimum power — this is the background of the ice performance requirements in the Finnish-Swedish Ice Class Rules. The EEDI regulations that regulate the environmental impact of ships will force ship owners to regulate the maximum power of new ships. If the maximum power based on EEDI value calculations is lower than the required ice class minimum, a conflicting situation ensues. This is illustrated in Figure 1. This ship fulfills roughly the phase 0 requirements but not the phase 3 EEDI requirements where the allowed power decreases by roughly 30%.

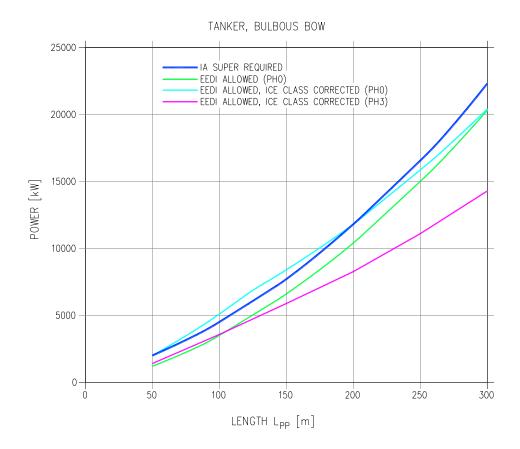


Figure 1 The allowed power according to EEDI regulations (ph0) and (ph3) together with a curve of the minimum required power based on ice class IA Super for a typical Baltic tanker with a bulbous bow.

Analysis of the ship design means to reduce the attained EEDI has shown that only up to about 10% decrease can be achieved – a further about 20% decrease will be achieved if LNG is used as fuel. This situation raises the question about the future balance in the winter navigation system: is the solution to lower the ice performance requirements for merchant ships – and thus deploy more icebreakers? This will lead to savings in merchant ship operational costs, but the total costs and emissions from the winter navigation system must be looked as a whole, taking into account both merchant ships' and icebreakers' CAPEX, OPEX and emissions.

For EEDI the overall energy and environmental efficiency of merchant vessels is achieved by using suitable hull forms and propulsion technology. The composition of merchant fleet doesn't influence the icebreaker type selection, providing large bulk- and tankers' proportion of whole traffic doesn't change much. However, as the maximum installable power is limited by future stricter EEDI power limits, resulting reduction of independent ice going capacity of merchant vessels will effect required amount of assistance and number of icebreakers. This should be carefully taken into account when considering future icerestriction policies, incentives and formulating EEDI regulation for cargo-vessels not yet covered by EEDI. In general, when considering the required future ice-breaking capacity, a holistic approach, taking into

account the CAPEX, OPEX and environmental issues should be used to assure a safe and efficient winter navigation system. (ILS, 2012)

3.2. Summary of different icebreaker types suitability for Baltic Sea use

In Figure 2 and Figure 3, the icebreakers and icebreaking supply vessels that were studied for this report are presented according to their propulsion power/breadth- ratio and bollard pull versus their icebreaking capabilities. The icebreaking capability is presented as ice thickness with the corresponding speed for each vessel. The lines in the figures show the minimum values required for the icebreaker categorization (A, B, C) presented above. The red dots represent the current icebreakers of Finland, Sweden and Estonia. Also the new Finnish icebreaker under construction is included. (For some of the vessels the data was not available and thus they are omitted from the figures.)

These tables give a straightforward characterization of the vessel's ability and efficiency to break ice compared to the requirements for the Baltic Sea use.

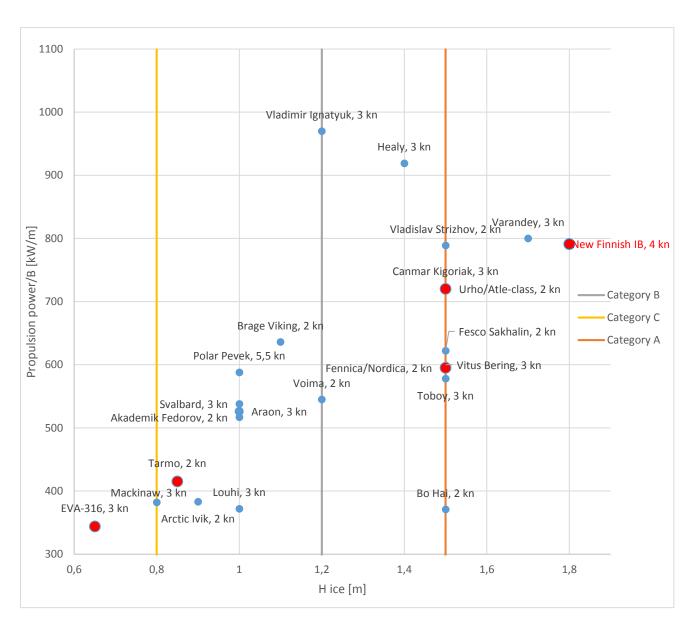


Figure 2. The propulsion power/breadth ratio vs. Icebreaking capabilities

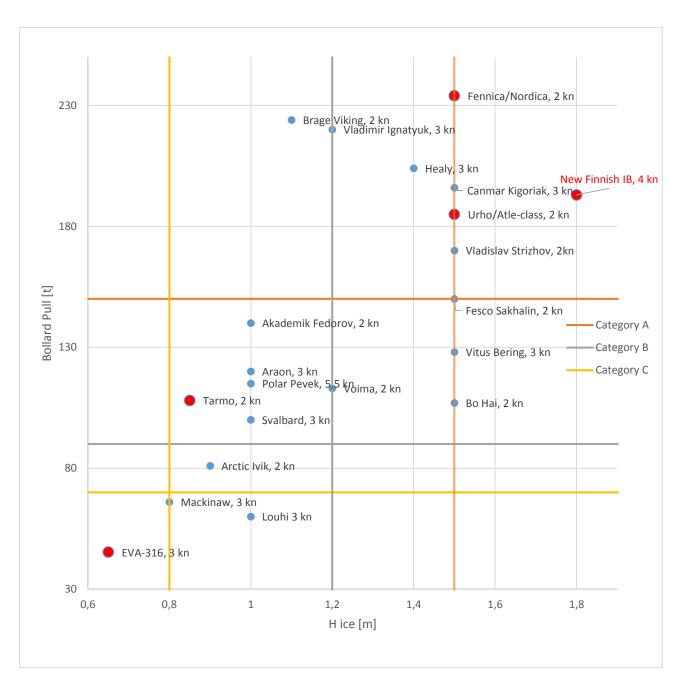


Figure 3. Bollard pull vs. Icegoing capability.

Of the current icebreaking vessels in the world, the ones that could be categorized in the Category A are, in addition to the Finnish, Swedish and Russian and Canadian icebreakers, mainly different kinds of icebreaking supply vessels.

It has to be noted that icebreaking capability in itself does not make the vessel a good icebreaker. Good icebreaker has sufficient speed at the operational area's ice conditions and good maneuverability and backing performance in ice in escort operations. Also, the breadth of the icebreaker is crucial for its ability to create a wide enough channel for the escorted vessels.

Multipurpose supply vessels often have ice-going capabilities matching those of the category A Swedish/Finnish icebreakers, but they are mostly too narrow for this category (breadth demand for category B is fulfilled though). They can also be missing a towing notch etc. (The breadth problem was solved in Fennica-class and Botnica with wider forebody/reamers, and towing notch can be removable like in Fennica and Tor Viking classes.)

The DAT principle could be used even category A/B icebreakers, but in order to have the best assisting capabilities, the icebreaking capabilities have to be at the same level in both directions. For example Fesco Sakhalin operates with the Double Acting-principle, breaking ice with the stern as the bow is optimized for open water.

Candidates for category B include mainly supply vessels that have reasonable ice-going capabilities. These include AHTS-vessels like Vladimir Ignatyuk (+ sister vessels) and Brage Viking (+sister vessels) that have high bollard pull and propulsion power. This is also reflected in their icebreaking capabilities. Even if Brage Viking and her sister ships have a bulbous bow, the vessel's ice tests showed their decent performance in moderate ice conditions. Still, the bulbous bow limits their ramming capability in heavy ridges. Also the power needed for icebreaking is higher than with an icebreaker bow shape. This kind of vessels could perform icebreaking duties temporarily mainly in the Gulf of Finland, whilst the ice conditions in the Bay of Bothnia in the middle of winter could be too difficult. This class of vessels could also suit the Estonian icebreaking needs.

Category C-type vessels include mainly research vessels, patrol vessels and tugs. The research vessels and patrol vessels are mainly open water ships that have some icebreaking capability. Research vessels such as Araon are used for the research of the Arctic and Antarctic areas and thus have quite good icebreaking abilities. Patrol vessels with ice capabilities patrol often in areas that have one year ice in the winter. Louhi is one example of a vessel type that could operate as category C icebreaker. EVA-316 can be categorized to the C class, and it has proved in the recent years that it can operate well in the Pärnu Bay ice conditions even on hard winters.

3.3.1. Icebreakers and icebreaking supply vessels under construction

There are several icebreaking vessels under construction at the time of writing. Especially the increased activities in the Russian Arctic have increased the demand for rescue and salvage ships with icebreaking capabilities. At the time of writing, 4 icebreaking salvage vessels were under construction for Russia. Two of these vessels are built at Nordic Yards Wismar, scheduled for delivery in 2015.

Also, special concepts have been introduced: one of the four salvage vessels, oblique multipurpose icebreaking emergency and rescue vessel Baltika, is to be delivered from the Arctech Helsinki shipyard in spring 2014. The vessel can perform icebreaking duties also sideways and will thus be able to open a wider

channel than traditional icebreakers, up to 50 meters. Baltika is also equipped to perform multiple duties of rescue and salvage and environmental protection. The icebreaking capabilities of Baltika are 3 knots in 1 m level ice both ahead and astern and sideways in 60 cm level ice.

Several multipurpose icebreaking supply vessels have also been built in the last years. Two of those are Vitus Bering and Aleksey Chirikov built by Arctech Helsinki Shipyard for Sovcomflot. These vessels will be operating in the Sakhalin area and are able to operate in 1.7 meter ice independently. Arctech shipyard is currently also contracted to build a developed version of these vessels to be delivered in 2016. It will be able to operate in 1.5 thick ice independently.

Russia will also receive in 2015 from the Baltic Shipyard a DAS icebreaker that has the ability to move 2 knots in 2 meter ice, both ahead and astern. The vessel (referred as LK-25 (also named Viktor Tschernomyrdin) will have 25 MW of power and a breadth of 29 meters with the price of 210 million US dollars. Another pure icebreaker project in Russia worth mentioning is the LK-60 nuclear icebreaker that will be launched from the Baltiysky Zavod shipyard in 2017 and will operate in the Arctic and the Siberian rivers. The vessel would be able to break 3 meter thick ice. The estimated price of this vessel is around 1,2 billion US dollars.

In Canada, different types of icebreaking vessels are either being built or in design phase. The Royal Canadian Navy will receive in 2018 a multiseason patrol ship that will be patrolling the Canadian Arctic waters. The Canadians are also investing for a new 1,3 billion dollar icebreaker (John G. Diefenbaker) for the Canadian Coast Guard. The icebreaker would have 42 MW of power with diesel engines and move 3 knots in 2,5 m ice, which is in the range of the Russian nuclear icebreakers.

Of these new vessels, the icebreaking supply vessels have ice-going capabilities that match those of the Finnish/Swedish icebreakers. They have usually 19-21 meters breadth and as discussed earlier limit their use as category A icebreakers. However new innovations like Baltika type oblique icebreaker concept can break ice sideways in moderate ice conditions. Of the other icebreaking ships being built, LK-25 is the closest one to match the Finnish/Swedish icebreaking needs.

References:

ILS Oy (2011): The world icebreaker, ice breaking supply and research vessel fleet. Baltic Icebreaking Management.

ILS Oy (2012): Analysis of requirements for a new generation icebreaker for the Baltic.

THE WORLD ICEBREAKER, ICE BREAKING SUPPLY AND RESEARCH VESSEL FLEET

First by ILS Oy, 2011 Updated May 2014

CONTENTS

1. THE LIST OF ICEBREAKERS, ICE BREAKING SUPPLY	Y SHIPS AND
ICE CAPABLE RESEARCH SHIPS	2
ARGENTINA	3
AUSTRALIA	3
GREAT BRITAIN	3
CANADA	4
CHILE	4
CHINA	5
DENMARK	5
ESTONIA	5
FINLAND	6
GERMANY	7
JAPAN	7
KAZAKSTAN	8
LATVIA	8
NETHERLANDS	8
NORWAY	9
RUSSIA	9
SOUTH AFRICA	16
SOUTH KOREA	16

1. THE LIST OF ICEBREAKERS, ICE BREAKING SUPPLY SHIPS AND ICE CAPABLE RESEARCH SHIPS

The icebreaker and ice breaking supply vessel fleet is compiled into the tables below. An icebreaker is a ship that is intended to break ice in order to escort merchant vessels, to do ice management or to carry out some other special task in ice. Usually these kinds of vessels are pure icebreakers, ice breaking supply vessels or cruise ships (modified usually from icebreakers). The borderline between different vessels is not exact and if there are some omissions, they are not made on purpose.

The list has been done considering each country in itself. This division into countries has been done based on the operational area – not necessarily based on the nationality of the owner. The owner of the vessel is sometimes not clear and sometimes instead of the owner, the operator is mentioned in the list.

The ship length and beam are those at the waterline but some information does not mention whether the data is referring to waterline or length overall. The bollard pull is also mentioned in the list. The bollard pull characterises the ship's ability to break ice – naturally together with a hull form suitable for ice breaking. The bollard pull information can also be related to the force required to keep an AFRAMAX tanker stationary in a storm – at least 100 t bollard pull is required. An AFRAMAX tanker requires two icebreakers to escort her in more severe ice conditions. The propulsion power, propeller and propulsion system influence the bollard pull. It is here estimated from the data on power and propellers, and if possible checked with some other public data. Overall, some caution is necessary concerning the bollard pull or the ice breaking capability.

The ice breaking performance in level ice reflects the capability of the ship in ice. This breaking performance solely does not make a good icebreaker. The requirements for a good icebreaker include a sufficient speed in the ice conditions of the operational area (in the Gulf of Bothnia for example 10-12 knots in 80 cm thick ice) and good manoeuvrability in ice for escort operations. Additionally it can be observed that even a technically good icebreaker is not performing well in escort services if the crew cannot use all the capability invested into their ship. The high average escort speed is one of the main measures of a good, smooth winter navigation system. The ice breaking capability and the bollard pull help in assessing the capability of a ship in escort operations.

The world's icebreaker and ice breaking supply vessel fleet is seemingly large in this list format; more than 80 ships – partly because many of the ice breaking research vessels like RV Polarstern are included in the list. The ships included in the list are divided into very different ship types. The supply vessels are intended to operate in various tasks at offshore oil and gas fields and thus they are not intended to be used in escort duties – this is reflected for example in that these supply vessels do not have a towing notch. An example of the necessity for an icebreaker to have a notch is given by the addition of a notch into the Estonian icebreaker EVA – 316. The bridge of a supply ship is not suitable for escort operations as a large visibility sector astern is required for icebreakers. Apart from research and supply ships the list includes some ships used in cruising in polar waters.

Note: The data that is estimated is marked with **bold**.

ARGENTINA											
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks	
Almirante Irizar (1)	Argentinean Navy	1978	113.4	24.8	9.5	11.95	138	1.0 / 3	2 x FPP	Towing notch but not meant to escort duties. Fire in the auxiliary generator room, in shipyard at least year 2008.	

AUSTRALIA												
Ship	Owner (or	Completed	Lwl	$B_{ m wl}$	T [m]	P [MW]	T _B [t]	h _i [m] /	Propulsion	Remarks		
	operator)		[m]	[m]				v [kn]				
Aurora Australis (1)	Antarctic Shipping Ltd (P&O Polar)	1989	88.4	20.3	7.9	10	NA	1.23 / 2.5	1 x CPP	Antarctic supply and oceanographic research, nozzle		

GREAT BRI	GREAT BRITAIN												
Ship	Owner (c	r Completed	Lwl	$B_{ m wl}$	T [m]	P [MW]	T _B [t]	h _i [m] /	Propulsion	Remarks			
	operator)		[m]	[m]				v [kn]					
James Clark	British									Antarctic supply and			
Ross (1)	Antarctic	1991	90.0	18.9	6.4	6.3	74	NA	1 x FPP	oceanographic research,			
KOSS (1)	Survey									nozzle			

CANADA										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Louis S. St. Laurent	Canadian Coast Guard	1969	101.9	23.8	9.9	17.7	202	1.2 / 3	3 x FPP	Modernized in 1988
Pierre Radisson (1)	Canadian Coast Guard	1978	88.9	19.2	7.2	10.1	115	1.1 / 2	2 x FPP	R-class
Amundsen (1)	Canadian Coast Guard	1979	88.9	19.2	7.2	10.0	115	1.1 / 2	2 x FPP	R-class, Ex. Sir John Franklin, research vessel
Des Groseilliers (1)	Canadian Coast Guard	1982	88.9	19.2	7.2	10.0	115	1.1 / 2	2 x FPP	R-class
Terry Fox (1)	Canadian Coast Guard	1983	80.6	17.2	8.3	17.7	190	1.2 / 7	2 x CPP	Previously a Beaufort Sea supply vessel
Arctic Shiko, Seaforth Atlantic		1984	60.9	14.5	5.9	9.0	125	1.05 / 2	2 x CPP	Sold to Maersk (Maersk Trader and Maersk Tracker) but sold further
Arctic Ivik (1)	Canadian Coast Guard	1985	64.7	14.0	5.8	5.3	81	0.9 / 2	2 x CPP	Beaufort Sea supply vessel, no towing notch.
Henry Larsen	Canadian Coast Guard	1987	94.1	19.4	7.2	12.0	115	1.2 / 2	2 x FPP	
Under const	ruction 2014								•	
Arctic Offshore Patrol Ship	Royal Canadian Navy	2018?	98	19	5,75	9	NA	NA	2	

CHILE										
Ship	Owner (or	Completed	Lwl	$B_{ m wl}$	T [m]	P [MW]	T _B [t]	h _i [m] /	Propulsion	Remarks
	operator)		[m]	[m]				v [kn]		
Almirante Viel	Chilean Navy	1969	89.2	19.1	6.3	8.8	112	0.9 / 2	2 x FPP	No towing notch, ex. CCG Norman McLeod Rogers

CHINA										
Ship	Owner (or	Completed	L_{pp}	B [m]	T [m]	P [MW]	T_B [t]	h _i [m] /	Propulsion	Remarks
	operator)		[m]					v [kn]		
Bo Hai (1)	Bohai Bay	1982	73.0	18.0	7.5	7 1	107	1.5 / 2	2 x CPP	Ex. Beaufort Sea supplier
D0 11a1 (1)	Oil Company	1902	73.0	16.0	1.5	7.1	107	1.3 / 2	(nozzles)	Robert LeMeur

DENMARK										
Ship	Owner (or	Completed	L_{wl}	B_{wl}	T [m]	P [MW]	T_{B} [t]	h _i [m] /	Propulsion	Remarks
	operator)		[m]	[m]				v [kn]		
Danbjörn	Danish Navy	1965	68.0	17.0	6.0	8.7	96	1.0 / 2	2+2 x FPP	
Isbjörn	Danish Navy	1966	68.0	17.0	6.0	8.7	96	1.0 / 2	2+2 x FPP	
Thorbjörn	Danish Navy	1980	57.6	15.0	4.7	4.6	55	NA	2 x FPP	
Brage Viking (1), Loke V., Njord V., Magne V.	Viking	2010-2012	76.2	22.0	7.00 7.60	14	224	1.1/2	1 CPP in nozzle	Icegoing multipurpose AHTS-vessel

ESTONIA										
Ship	Owner (or operator)	Completed	L _{pp} [m]	B [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Tarmo	Veteede Amet	1963	82.0	21.2	7.4	8.8	108	0.85 / 2	2+2 x FPP	
EVA-316 (1)	Veteede Amet	1980 / 2005	48.6	12.2	3.8	4.4	45.3	0.65 / 3	2 x FPP (Rolls Royce)	In use at the Pärnu Bay, modified Finnish ex. Lonna
Botnica (1)	Arctia Offshore Oy	1998	77.9	23.1	7.2	10	117	111 6 / X		Multipurpose offshore/icebreaking

FINLAND										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Voima (1)	Arctia Icebreaking Oy	1954, 1979	83.5	18.7	7.0	10.2	113	1.2 / 2	2+2 x FPP	Modernized in 1979
Urho, Sisu (1)	Arctia Icebreaking Oy	1975, 1976	96.0	22.5	7.3	16.2	185	0.8 / 8.5	2+2 x FPP	
Otso, Kontio (1)	Arctia Icebreaking Oy	1986, 1987	90.0	23.4	7.3	15	160	0.8 / 10	2 x FPP	
Fennica, Nordica (1)	Arctia Offshore Oy	1993, 1994	96.7	25.2	8.4	15	234	0.8 / 9.5		Multipurpose offshore/icebreaking
Zeus (1)	Alfons Håkans Oy	1995	42.0	14.0	6.66	5.4	101	NA	1 x CPP	Tug, towing notch
Louhi (1)	SYKE(oper. Finnish Navy	1998	2011	14.5	5.0	5.4	60	0.5 / 8	2 x FPP (R-R)	Multipurpose vessel (oil/chem. recovery emergency towing, transport)
Under constr	uction 2014									
Kemin Karhu	Arctia Karhu	2014	37,8	12,8 [B]	4,7	3600	NA	0,7/3	2 x FPP (R-R azimuth)	Harbour icebreaker, tug,
New Icebreaker	FTA	2015	110 [Loa]	24	8	22	193	4/1,8	3 x FPP [azimuth)	

GERMANY										
Ship	· ·	Completed	L_{wl}	$B_{ m wl}$	T [m]	P [MW]	T _B [t]	h _i [m] /	Propulsion	Remarks
	operator)		[m]	[m]				v [kn]		
Polarstern (1)	Alfred Wegener Institute (BMBF)	1982	109.2	24.0	11.2	14	NA	1.5 / 5	2 x FPP	Antarctic supply and oceanographic research, nozzles
Neuwerk (1)	Wasser- und Schifffahrts- amt Cuxhaven	1998	78.9	18.6	5.8	5.8	115	0.5 / 5	2 x FPP (Schottel)	Standby and oil combating ship
Maria S. Merian (1)	Land Mecklenburg- Vorpommern	2005	88.2	19.2	6.5	3.8	NA	NA	2 x FPP Schottel tandem props	Marginal ice zone research vessel

JAPAN										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Soya	Japan Coast Guard	1978	94.0	15.6	5.5	11.5	132	1.0 / 2	2 x CPP	No towing notch
Shirase	Ministry of Defense	1982	124.0	27.0	9.2	22.1	243	1.5 / 3	3 x FPP	Retired
Teshio	Japan Coast Guard	1995	54.9 (OA)	10.2	5.0	2.6	NA	0.55 / 3	2 x CPP	Nozzles
Shirase (1)	Ministry of Defense	2009	126.0	27.0	9.2	22.1	NA	1.5 / 3	2 x FPP	Cruises to Antarctica

KAZAKSTAN	1									
Ship	Owner (or operator)	Completed	L _{pp} [m]	B [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Arcticaborg,. Antarcticaborg (1)	Wagenborg (ENI)	1998	57.7	16.6	4.4	3.2	32	0.6 / 3	2 x FPP (Azipod)	Supply ship in the Caspian Sea
Tulpar (1)	BUE Marine Ltd	2003	87.3	21.0	4.0	4	NA	0.6 / 2	2 x FPP (Schottel)	Supply ship in the Caspian Sea
Mangystau- 1,,5 (1)	JSC Circle Marine Invest	2010,2011	61.9	16.4	3.0	4.8	52	0.6 / 4	3 x FPP (Schottel)	Kashagan field in the Caspian Sea
Armanborg (1)	Wagenborg	conv.2009	42.56 WL	12.5	3.12	2.15	24	0.80/1.5	1 x FPP	Supply Ship in Caspian Sea (lengthened), ex Arppe

LATVIA										
Ship	Owner (or	Completed	L_{pp}	B [m]	T [m]	P [MW]	$T_{B}[t]$	h _i [m] /	Propulsion	Remarks
	operator)		[m]					v [kn]		
Varma	Port of Riga	1968	82.0	21.2	7.4	8.8	108	0.85 / 2	4 x FPP	

NETHERLAN	IDS									
Ship	Owner (or	Completed	L_{pp}	B [m]	T [m]	P [MW]	$T_{B}[t]$	h _i [m] /	Propulsion	Remarks
	operator)		[m]					v [kn]		
Sanaborg, (1) Serkeborg	Wagenborg	2012	65.85 WL	14.0	3.15	3.5	36.3	0.6/4	2xFPP (Wärtsilä Icepods)	Icebreaking Multipurpose Support and Supply Vessel

NORWAY										
Ship	Owner (or operator)	Completed	L _{pp} [m]	B [m]	T [m]	P [MW]	T_{B} [t]	h _i [m] / v [kn]	Propulsion	Remarks
Svalbard (1)	Royal Norwegian Navy	2001	89.0	19.1	6.5	10	NA	1.0 / 3	2 x FPP (Azipod)	Coast guard vessel, no towing notch
Polarbjorn (1)	Polar Ship Management	2001	80.4	18.0	7.25/ 7.85	7.07	-	-	1 CPP in nozzle	Icegoing multipurpose research vessel
Under cons	truction 2014									
Kronprins Haakon	Norwegian Institute of Marine Research	2016	>100	21	NA	NA	NA	NA	NA	NA

RUSSIA										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Karu	(RosMorPort)	1958	68.3	16.7	5.8	5.5	70	0.7 / 2	2+2 x FPP	Ex. Karhu
Ivan Kruzen- shtern, Yuriy Lisyanskiy, Fyodor Litke, Semen Dezhnev	RosMorPort	1964, 1965, 1970, 1971	62.0	17.5	6.2	3.5	54	0.7 / 2	2+1 x FPP	Port icebreakers
Tor	(RosMorPort)	1964	79.5	20.5	6.2	8.7	108	0.8 / 2	2+2 x FPP	Formerly Swedish
Dudinka	OJSC MMC Norilsk Nickel	1970	79.5	20.5	6.2	8.7	108	0.8 / 2	2+2 x FPP	Ex. Apu

Jermak	RosMorPort	1974	130.0	25.6	11.0	26.5	320	1.8 / 2	3 x FPP	
Admiral Makarov, Krasin	Fesco	1975, 1976	130.0	25.6	11.0	26.5	320	1.8 / 2	3 x FPP	
Kapitan M. Izmaylov, Kapitan Kosolapov	RosMorPort	1976	52.2	15.6	4.5	2.5	36	0.6 / 2	2 x FPP	Port icebreakers

RUSSIA										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T_B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Kapitan Plakhin	Severo- Zapadny Flot	1977	71.0	16.0	3.5	3.3	42	0.7 / 2	3 x CPP	River icebreaker
Kapitan Sorokin (1)	RosMorPort	1977/1991	130.2	30.5	8.5	16.2	181	1.9 / 2	3 x FPP	Bow changed to Thyssen Waas bow
Kapitan Zarubin	RosMorPort	1978	74.4	16.3	3.5	3.3	42	0.7 / 2	3 x CPP	River icebreaker
Kapitan Bukaev, (1) Kapitan Chadayev, Kapitan Krutov	(RosMorPort)	1978	71.0	16.0	3.3	3.3	42	0.7 / 2	3 x FPP	River icebreakers. Kapitan Krutov operates in the Sea of Azov.
Talagi (1)	(Rosneft)	1978	84.2	17.3	8.4	12.2	196	1.5 / 3	1 x CPP	Ex. Canmar Kigoriak, Beaufort Sea supply ship, no towing notch, nozzle
Kapitan Nikolaev	Murmansk Shipping Co.	1978/1990	125.8	25.6	8.5	16.2	181	1.8 / 2	3 x FPP	Bow changed to conical bow. Changed to be also as a rescue ship.
Kapitan Dranitsyn	Murmansk Shipping Co.	1980	121.3	25.6	8.5	16.2	181	1.3 / 2	3 x FPP	In use as a research and cruise ship
Kapitan Khlebnikov	Fesco	1981	121.3	25.6	8.5	16.2	181	1.3 / 2	3 x FPP	In use as a cruise ship
Magadan	Fesco	1982	78.5	20.0	6.0	7.0	87	1.0 / 2	2 x FPP	In the Okhotsk Sea
Smit Sakhalin, Smit Sibu	Smit Singapore (FEMCO)	1982	75.5	16.6	7.5	11.2	165	1.2 / 4	2 x CPP	Ex. Miscaroo and Ikaluk, Beaufort Sea supply ships

Svitzer Sakhalin (1), Svitzer Aniva, Svirter, Svitzer Busse, Svitzer Korsakov	Svitzer	2007	34.5	13.0	5.7	4.8	75	NA	2 x CPP (Rolls Royce)	Icebreaking terminal tugs for Sakhalin
---	---------	------	------	------	-----	-----	----	----	-----------------------------	--

RUSSIA										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Mudyug (1)	RosMorPort	1982/1989	89,8	20.0	6.0	7.0	87	1.5 / 2	2 x CPP	Changed to have a Thyssen Waas bow
Vladimir Ignatjuk(1)	Murmansk Shipping Co.	1983	80.6	17.2	8.0	17.1	200	1.2 / 3	2 x CPP	Ex. (Arctic) Kalvik, Beaufort Sea supply ship, no towing notch
Dikson	(RosMorPort)	1983	78.5	20.0	6.0	7.0	87	1.0 / 2	2 x CPP	In the White Sea
Kapitan Yevdokimov, (1), Kapitan Demidov, Kapitan Moshkin	(RosMorPort)	1983, 1984, 1986	73.0	16.0	2.5	3.8	41	0.9 / 2	4 x FPP	River icebreakers, Kapitan Demidov and Kapitan Moshkin operate in the Sea of Azov.
Akademik Feodorov (1)	AARI	1987	139.0	23.5	8.5	13.9	140	1.0 / 2	1 x FPP	Antarctic supply and oceanographic research
Rjurik, Askold	Sovfraht	2004, 2005	36.5	12.8	5.9	4.0	64	0.7 / 2	2 x CPP	LU5 class tugs, nozzles
Fesco Sakhalin (1)	Fesco	2005	93.5	21.2	7.5	13.0	150	1.5 / 2	2 x FPP (Azipod)	Supply vessel in the Okhotsk Sea, no towing notch
Pacific Enterprise,(1) Pacific Endeavour, Pacific Endurance	Swire Offshore	2006	77.6	19.0	7.5	14.0	158	1.5 / 4	2 x FPP (Rolls Royce)	Supply vessel in the Okhotsk Sea, no towing notch, Russian flag
Polar Pevek (1)	Rieber Shipping	2006	74.4	17.0	6.5	10	115	NA	2 x FPP (Azipod)	Supply vessel in the Okhotsk Sea, at Dekastri terminal, no towing notch

RUSSIA										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T_{B} [t]	h _i [m] / v [kn]	Propulsion	Remarks
Yuri Topchev,(1) Vladislav Strizhov	Sevmornefte- gaz (Gazprom)	2006	84.4	19.0	8.0	15.0	163	1.7 / 2	2 x FPP (Azipod)	Originally aimed for the Pechora Sea but Vladislav Strizhov at present in the Okhotsk Sea, no towing notch
Svetlyy, Vz morye	Lukoil Kaliningrad- morneft	2007	65.0	15.0	4.3	5.3	60	NA	2 x CPP	AHTS ships in Caspian Sea
Toboy (1)	Lukoil	2008	73.3	18.5	9.1	10.4	NA	1.5 / 3	2 x FPP (SteerProp)	Pechora Sea supply / icebreaker
Varandey (1)	Lukoil	2008	88.8	21.0	10.5	16.8	NA	1.7 / 4	2 x FPP (SteerProp)	Pechora Sea icebreaker / supply
Moskva (1) Sankt Petersburg	RosMorPort	2008, 2009	97.2	26.5	8.5	16.0	NA	NA	2 x FPP (SteerProp)	
Langepas, Kogalym, Svetlyy, Vzmore	Lukoil	2009, 2010	62.4	15.0	4.3	5.3	60	NA	2 x CPP	Korchagin field in the Caspian Sea
Nuclear power	red icebreakers									
Lenin	AtomFlot	1959	124.0	26.8	10.5	28.8	330	1.6 / 2	3 x FPP	Retired, museum
Arktika, Sibir, Rossija, Sovetskiy Soyuz, Yamal	AtomFlot	1974-1992	136.0	28.0	11.0	49.0	480	2.3 / 2	3 x FPP	Arktika and Sibir not in use

RUSSIA										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Taimyr, (1) Vaigach	AtomFlot	1989, 1990	140.6	28.0	8.0	32.5	295	2.0 / 2	3 x FPP	Shallow draught
50 Let Popedy (1)	AtomFlot	2007	145.6	28.0	11.0	49.0	480	2.7 / 2	3 x FPP	Arktika class with improved bow form
Under const	Under construction 2014									
Baltika	Russian Marine Emergency Rescue Service	2014	72,1	20,5 [B]	6,3	9,0	NA	1.0/3	3 x FPP (Azimuth)	Oblique icebreaker
Murmansk	Rosmorport	2015	119,8 [Loa]	27,5 [B]	8,5	27	NA	1,5/3,5	2 x FPP (Azimuth)	
LK-25	FSUE Rosmorport	2015	142 [Loa]	29 [B]	9,5	25	NA	2/2	3 x FPP (2x Azipod, 1 x FPP)	
2 Rescue Icebreakers	Russia's State Maritime Rescue Coordination Centre	2015	86	19	NA	NA	NA	NA	2 x FPP (Azipod)	

SOUTH AFRI	SOUTH AFRICA									
Ship	Owner (or	Completed	L_{wl}	B_{wl}	T [m]	P [MW]	T_B [t]	h _i [m] /	Propulsion	Remarks
	operator)		[m]	[m]				v [kn]		
S.A. Agulhas	Smit									Antorotic supply /
_	Amandla	1977	112.0	18.1	6.05	4.48	NA	NA	1 x CPP	Antarctic supply / oceanographic research
(1)	Marine Ltd.									oceanographic research

SOUTH KOR	SOUTH KOREA										
Ship	Owner (or operator)	Completed	L _{pp} [m]	B [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks	
Araon (1)	KOPRI	2009	95.0	19.0	6.8/7.6	10000	120	1.0/3	2xFPP R-R	Icebreaking Research vessel, Antarctic/Arctic	

SWEDEN										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Ale (1)	Sjöfarts- verket	1973	47.0	13.0	5.0	3.5	48.0	NA	2 x CPP	Lake icebreaker
Atle, Frej, Ymer (1)	Sjöfarts- verket	1974, 1975, 1977	96.0	22.5	8.3	16.2	185	1.4 / 2.5	2+2 x FPP	Same as Urho- class
Oden (1)	Sjöfarts- verket	1989	100.2	31.2	8.5	17.7	240	1.8 / 3	2 x CPP	
Tor Viking II (1), Balder Viking, Vidar Viking	Viking Supply Ships AS / Sjöfarts- verket	2000, 2000, 2001	75.2	18.0	7.2	13.4	200	NA	2 x CPP	Removable notch, nozzles, multipurpose offshore/icebreaker

USA										
Ship	Owner (or operator)	Completed	L _{wl} [m]	B _{wl} [m]	T [m]	P [MW]	T _B [t]	h _i [m] / v [kn]	Propulsion	Remarks
Polar Star, Polar Sea (1)	US Coast Guard	1973, 1976	107.3	23.8	8.5	44.8	454	1.8 / 3	3 x CPP	
Nathaniel B. Palmer	Edison Chouest (NSF)	1992	85.3	18.3	9.1	9.5	NA	0.9 / 3	2 X CPP	Research vessel, Kort nozzles
Healy (1)	US Coast Guard	1999	120.9	24.4	8.5	22.4	204	1.4 / 3	2 x FPP	Research vessel, no towing notch
Mackinaw (1)	US Coast Guard	2006	73.2	17.7	4.9	6.7	66	0.8 / 3	2 x FPP (Azipods)	Great Lakes ice- breaker, no towing notch
Under construction 2014										
Sikuliaq	National Science Foundation	2014	72	16	5,7	4,3	NA	0,76/2	2 x FPP (Wärtsilä Icepod)	Research vessel

AUSTRIA										
Ship	Owner (or	Completed	L _{pp}	B [m]	T [m]	P [MW]	$T_{B}[t]$	h _i [m] /	Propulsion	Remarks
	operator)		[m]					v [kn]		
Röthelstein	Österreichhis		42.3						2xFPP	
	he Donau	1995	_	10.0	2.0	1.12	120	0,7		River Icebreaker
(1)	Kraftverke		Loa						(Azipod)	

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS P-899, 17.2.2014/HE

SHIP NAME: Akademik Fedorov

Owner/Operator: Arctic and Antarctic Research Institute AARI

Builder: Rauma shipyard

Year of Construction: 1987

Contract price:

Ship Type: Research vessel

Operation Area: Russian Arctic

Class Notation: KM * ULA [2]A2

Ice Class: KM ULA

Stem Angle: 29°

L_{OA} 141,2 m

 L_{PP}

 $\begin{array}{ccc} \textbf{L}_{WL} & 128,6 \text{ m} \\ \textbf{B}_{m} & 23,5 \text{ m} \\ \textbf{B}_{WL} & 23,2 \text{ m} \\ \textbf{H} & 13,3 \text{ m} \\ \textbf{T}_{design} & 8,5 \text{ m} \end{array}$

Tscantling

Displacement 16200 t **DWT** 7200 t

Accommodation: 80 crew + 160

Open Water Speed: 16 kn

Main Engine Type/Power: 2 x Wärtsilä 16V32D, 2x6000 kW =12000 kW

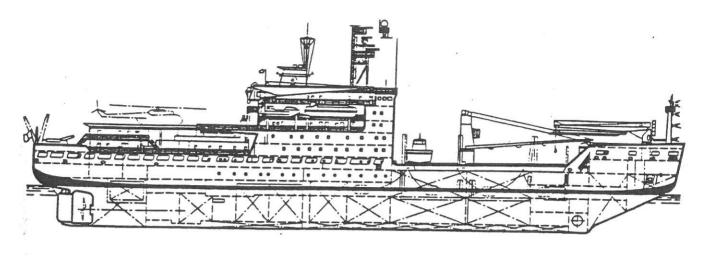
Propulsion Type/Power: 2 x 6000 =12000 kW

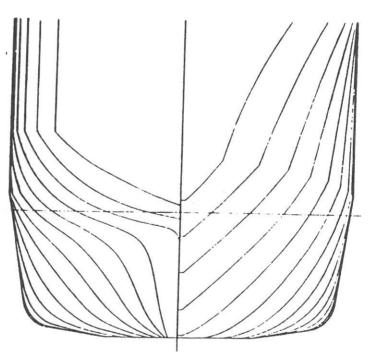
Propellers, Type, Dia: One FP, 4 detachable blades

Bollard Pull: 140 t **BP/B**_{WL}: 6,03 t/m **Prop. Power/Bwl**: 517 kW/m

Ice Performance Ahead: 2 kn in 1.0 m ice

Ice Performance Astern:


Other Icebreaking Characteristics:


Miscellaneous: ATTACHED LINEDRAWING

References:

AARI: Akademik Fedorov. Available at: http://www.ipyeaso.aari.ru/fedorov_tech.htm Haapanen, M.E. Antarctica, as seen by a Shipbuilder. 1989. POAC'89, Vol. 2, p. 975-982.

RV AKADEMIK FEDOROV

 $L_{WL} = 128.6 \text{ m}$

 $B_{WL} = 23.2 \text{ m}$

 $T_{WL} = 8.5 \text{ m}$

 $\Delta = 15 600 t$

Shaft power = $12\ 000\ kW$

Data from Haapanen (1989).

Miscellaneous: -

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS P-899, 17.2.2014/HE

SHIP NAME: Akademik Tryoshnikov Owner/Operator: Federal Service for Hydrometerology and environmental Monitoring, Russia **Builder:** Admirality Shipyards, Russia **Year of Construction:** 2012 **Contract price: Ship Type:** Research Vessel **Operation Area:** Antarctic Class Notation: Research vessel class LU7 KM [2] A2 (CM Arc7 [2] Aut2) Ice Class: LU7 Stem Angle: 133,53 m L_{OA} L_{PP} 123,24 m \mathbf{L}_{WL} \mathbf{B}_{m} 23,25 m \mathbf{B}_{WL} Н 13,5 m 8,5 m T_{design} $T_{\text{scantling}}$ Displacement 16539 t **DWT** 6634 t Accomodation: 60 crew, 80 special personnel **Open Water Speed:** 16 kn Main Engine Type/Power: 2 x W9L38B 6525 kW, 1 x 6L38B 4350 kW = 16854 kW 2*7000=14000 kW **Propulsion Type/Power:** Propellers, Type, Dia: 2 FP, 4 blades **Bollard Pull:** N/A BP/B_{WL}: Prop. Power/(Bwl) Bm: 602 kW/m **Ice Performance Ahead: Ice Performance Astern: Other Icebreaking Characteristics:**

References: http://en.wikipedia.org/wiki/Akademik_Tryoshnikov

SHIP NAME: Araon

Owner/Operator: KOPRI (Korean Polar Research Institute)

Builder: Hajin Heavy Industries & Construction Co Korea

Year of Construction: 2009

Contract price: 108 billion KRW

Ship Type: Icebreaking research vessel

Operation Area: Antarctic & Arctic

Class Notation: KR + KRS1-special purpose ship (Research) PL10, DAT(-30°), HMS1/ +KRM1-

UMA3, DPS2, NBS2

Ice Class: DNV Polar 10

 \textbf{L}_{WL}

B_m 19 m

 $\boldsymbol{B}_{\text{WL}}$

 $\begin{array}{lll} \textbf{H} & 9,9 \text{ m} \\ \textbf{T}_{\text{design}} & 6,8 \text{ m} \\ \textbf{T}_{\text{scantling}} & 7,6 \text{ m} \\ \textbf{Displacement} & 9071 \text{ t} \\ \textbf{DWT} & 3070 \text{ t} \end{array}$

Accommodation: 85 person (25 crew)

Open Water Speed: Max 16 knots

Main Engine Type/Power: 4 STX Engine/MAN B&W 7132/40 (4*3378kW?)

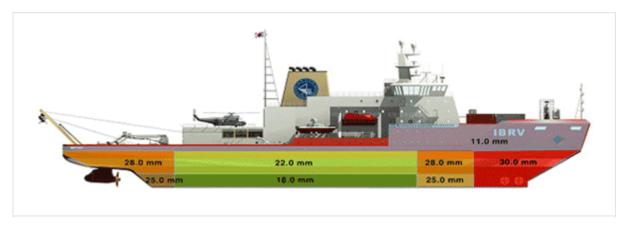
Propulsion Type/Power: 2 Rolls Royce FP Azimuth thrusters 5000 kW =10 MW

Propellers, Type, Dia: 2 FP Azimuth

 Bollard Pull:
 120 t

 BP/B_{WL}:
 6,32 t/m

 Prop. Power/Bm(Bwl):
 526 kW/m


Ice Performance Ahead: 3 knots at 1 meter multiyear ice

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: GA, linedrawing available

References: Significant Ships of 2009

Non-public: ILS OY: RV Araon Operational Guidelines

SHIP NAME: ARCTIC IVIK

Owner/Operator: Canadian Coast Guard

Builder:

Year of Construction: 1983

Contract price:

Ship Type: Heavy Gulf (and Arctic) Icebreaker, supported first operations in the Beaufort

Sea, designed as supply vessel in ice

Operation Area: Worldwide, Arctic

Class Notation:

Ice Class:

Stem Angle: 24,5° L_{OA} 67,4 m

L_{PP} -

L_{WL} 64,7 m

 $\boldsymbol{B}_{\text{m}}$

 $\begin{array}{ccc} \textbf{B}_{\text{WL}} & 14,0 \text{ m} \\ \textbf{H} & 5,8 \text{ m} \\ \textbf{T}_{\text{design}} & 4,27 \text{ m} \end{array}$

T_{scantling}

Displacement 2375 t

DWT

Accomodation: Complement 24 persons

Open Water Speed:

Main Engine Type/Power: 5370 kW Propulsion Type/Power: 2 shafts

Propellers, Type, Dia: 2 CP-propellers in nozzles+2 rudders

Bollard Pull: 81 t BP/B_{WL} : 5,5 t/m Prop. Power/Bwl: 383 kW/m

Ice Performance Ahead: 0,9 m/2 kn level ice

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: Lines available

References: Keinonen, Arno: Development of Icebreakers. (Lines) MIT, 1986.

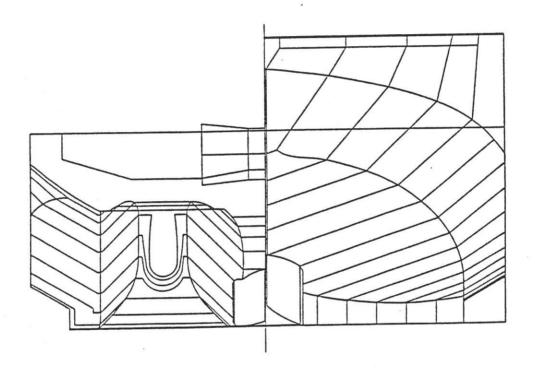


FIG. 3f
BODY PLAN, FORE AND AFT CONTOURS OF ARCTIC IVIK

SHIP NAME: Botnica

Owner/Operator: Tallinna Sadam

Builder: Aker Finnyards Rauma

Year of Construction: 1998

Contract price: Sold to Estonia for 50 mil euros

Ship Type: Multipurpose icebreaker and platform supply vessel

Operation Area: Port of Tallinn

Class Notation: DNV +A1- Supply vessel, SF-HELK-E0, Icebreaker ICE 10, DYNPOS AUTRO RPS

Ice Class: ICE 10

 $\begin{array}{lll} \text{Stem Angle:} & 14^{\circ} \\ \text{L}_{\text{OA}} & 96,7 \text{ m} \\ \text{L}_{\text{PP}} & 77,9 \text{ m} \end{array}$

 L_{WL}

B_m 24 m

B_{WL}

 T_{design}
 7,2 m

 T_{scantling}
 7,8 m

Displacement

DWT 1000 tonnes (icebreaker)

Accommodation: 21 crew, 72 berths

Open Water Speed: 15 kn

Main Engine Type/Power: 12 x Cat 3512B, 15 MW

Propulsion Type/Power: 2 x 5 MW Azipods

Propellers, Type, Dia: FPP 3,8 m

Bollard Pull: 105 t

BP/B_{WL}: 4,375 t/m

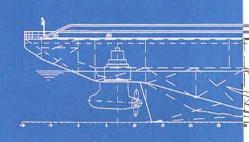
Prop. Power/Bwl: 416 kW/m

Ice Performance Ahead: 8 kn in 0,6 m ice, 4 kn in 1,2 m ice

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: GA available


References:

Breaking Barriers: Botnica primed for Baltic Winters and North Sea summers.

Breaking Barriers

PRINCIPAL Data

Botnica

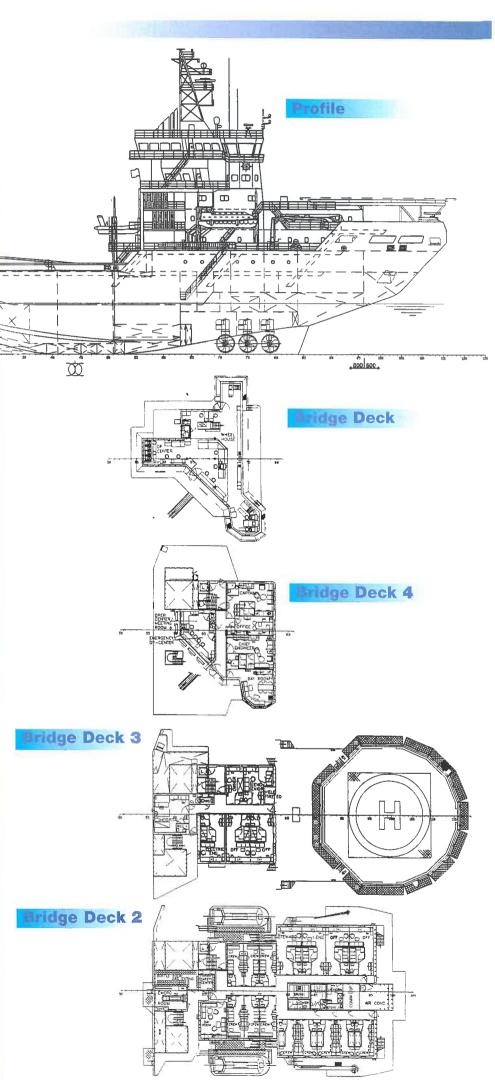
Length, oa 96.70m Length, bp 77.90m Breadth, mld 24.00m Depth, main deck 11.70m

Draught, scantling

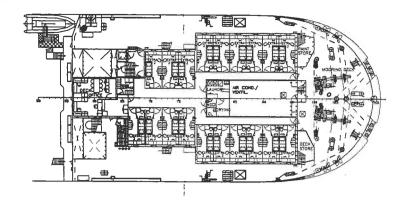
(icebreaker) 7.80m
Draught, design (icebreaker) 7.20m
Draught, scantling (offshore) 8.50m
Deadweight, icebreaker 1,000 tonnes

Deadweight, offshore 2,850 tonnes

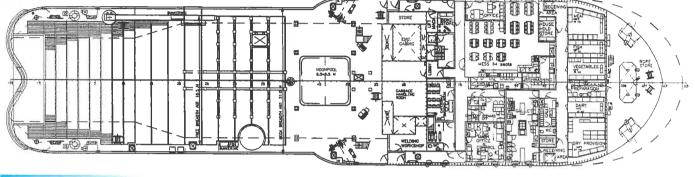
Main engines 12 x Cat 3512B
Output, MCR 15MW
Propulsion 2 x 5MW Azipods

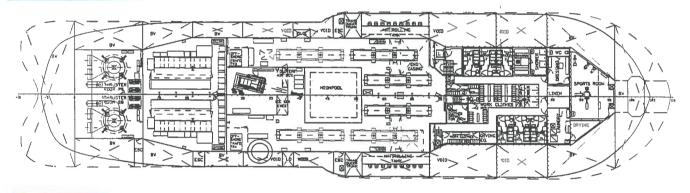

(diesel-electric)

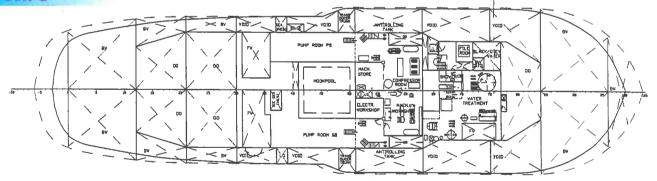
Bollard pull 105 tonnes
Speed, open water 15 knots
Speed, 0.6m ice 8 knots
Speed, 1.2m ice 4 knots
Crew (maritime) 21
Berths 72

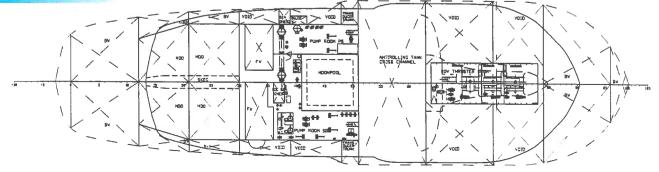

Class DNV: +A1-Supply Vessel

SF-HELK-E0, Icebreaker Ice 10


Icebreaker Ice 10 DYNPOS AUTRO RPS


Bridge Deck 1


Upper Deck


Deck 2

Deck 3

Double Bottom

SHIP NAME: BRAGE VIKING Sister Ships Loke Viking, Njord Viking, Magne Viking

Owner/Operator: Viking Supply Ships **Builder:** Zamakona, Spain

Year of Construction: 2010-2012

Contract price:

Ship Type: Icegoing multipurpose AHTS-vessel, clean design, type VS4622CD-AHTS

Operation Area: Worldwide

Class Notation: DnV, +1A1, ICE 1A, Tug Supply Vessel, Fire Fighter II, OILREC, SF, E0, DYNPOS-

AUTR, NAUT-OSV(A), CLEAN DESIGN, COMF-V(3), DEICE, T-MON, BIS, DK(+),

HL(2,8), LFL*

Ice Class: 1A

Stem Angle: Bulbous bow

 L_{OA} 85,2 m L_{PP} 76,2 m

 \mathbf{L}_{WL}

 $\begin{array}{lll} \textbf{B}_{\textbf{m}} & 22,0 \text{ m} \\ \textbf{B}_{\textbf{WL}} & 22,0 \text{ m} \\ \textbf{H} & 9,0 \text{ m} \\ \textbf{T}_{\textbf{design}} & 6,0 \text{ m} \\ \textbf{T}_{\textbf{scantling}} & 7,6 \text{ m} \end{array}$

Displacement

DWT 4500 t

Accomodation: 45 persons

Open Water Speed: 17 kn

Main Engine Type/Power: 2 x MAK 4000 kW+2 x MAK 3000 kW Total 14 000 kW

Propulsion Type/Power: two shafts 14 000 kW

Propellers, Type, Dia: CP-propellers in nozzles, Dia 4250 mm + 2 rudders (70°)

Bollard Pull: 224 t BP/B_{WL} : 10,2 t/m **Prop. Power/Bwl**: 636 kW/m

Ice Performance Ahead: 1,1 m/2 kn level ice

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: - Cargo deck 750 m², 10-15 t/m², 1000 t

- 1x 830 kW azimuth thruster and 2x830 kW tunnel thruster forward, 2x830 kW tunnel thruster aft
- Rolls-Royce/ Brtattvaag Anchor handling/towing winch, split stern roller, sliding cranes
- Oil rec., FW, Drill water, Brine, Liquid mud, Dry bulk, Base oil, methanol, urea tanks

References: Brage Viking ice trials presentation, Harri Eronen.

Vessel specification available at: http://www.vikingsupply.com/event/doLink/famid/391925
"Ice class credentials win Barents Sea contract" Offshore Support Journal Annual Review 2010

Non-public: Lines drawing

SHIP NAME: Talagi (Canmar Kigoriak)

Owner/Operator: Canadian Marine Drilling

Builder: Saint John Shipbuilding and Drydock

Year of Construction: 1979

Contract price:

Ship Type: Icebreaker/Anchor Handling Tug Supply Vessel

Operation Area:

Class Notation: Lloyds + 100 A1 Icebreaker Tug

Ice Class:

Stem Angle: 24°

L_{OA} 90,72 m

 \mathbf{L}_{PP}

 ${f L}_{WL}$ 85,2 m ${f B}_{m}$ 17,3 m ${f B}_{WL}$ 17,3 m

н

T_{design} 8,35 m

 $\textbf{T}_{\text{scantling}}$

Displacement 6549 t **DWT** 1890 t

Accommodation: 20 crew, 14 supernumeraries

Open Water Speed: 15 kn (max 17,25 kn)

Main Engine Type/Power: 2 Sulzer 12V40/48 = 12500 kW

Propulsion Type/Power:

Propellers, Type, Dia: 2 LIPS CP propeller, 2 CT12 electric driven tunnel type thrusters

 Bollard Pull:
 196 t

 BP/B_{WL}:
 11,3 t/m

 Prop. Power/Bwl:
 722 kW/m

Ice Performance Ahead: 3 kn in 1,5 m level ice

Ice Performance Astern:

Other Icebreaking Characteristics: Icebreaking hull wash system, special ice-breaking low friction hull

coating

Miscellaneous: GA, linedrawing available

References: Nyman, Tapio; Kivimaa, Seppo (1991). Ramming model tests of the MV Canmar Kigoriak.

Valtion teknillinen tutkimuskeskus. Tiedoitteita 1251.

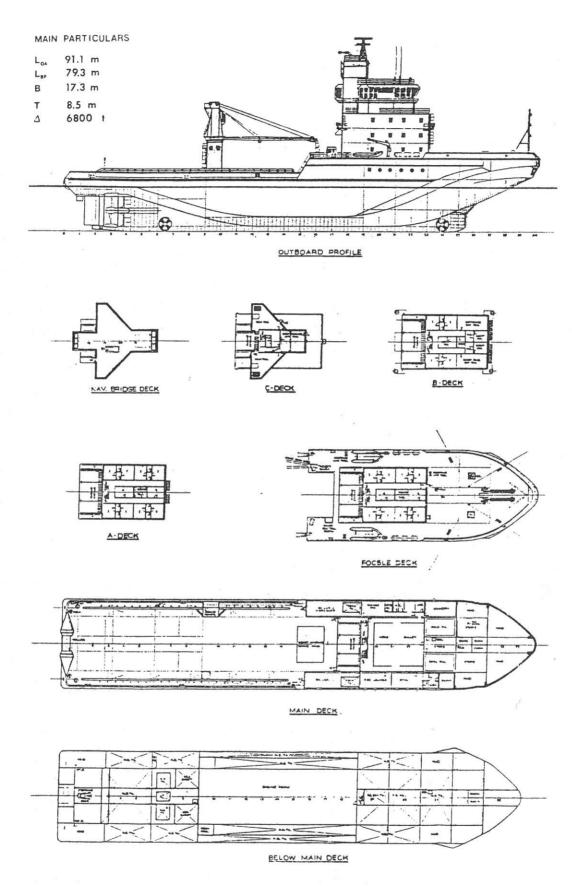
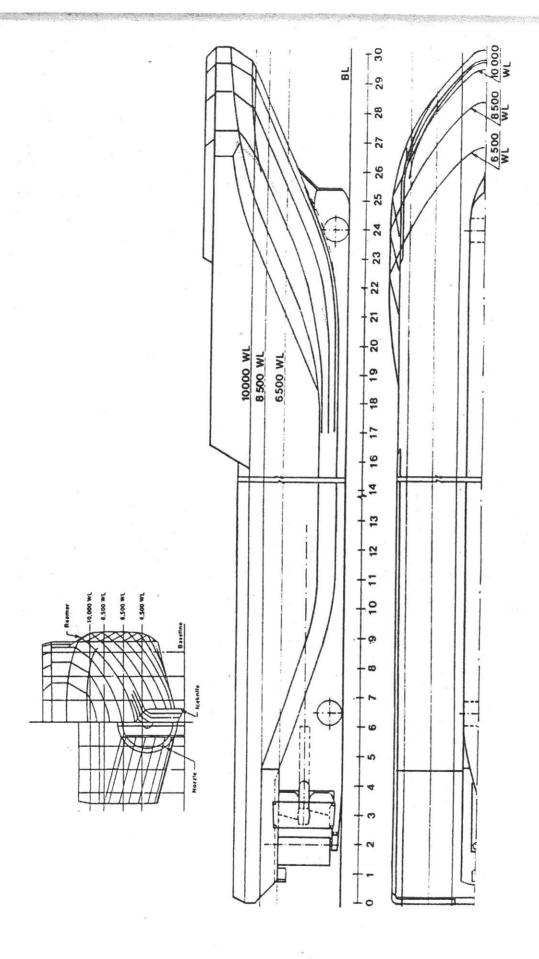



Fig. 1. The general arrangement of the MV Canmar Kigoriak.

The lines drawing of the MV Canmar Kigoriak. Fig. 2.

SHIP NAME: EVA 316

Owner/Operator: Estonian Maritime Administration

Builder: conv. BLRT, Estonia (ex Lonna Conversion)

Year of Construction: 1980/2005

Contract price:

Ship Type: Multipurpose Oil Recovery Vessel/Icebreaker; other tasks firefighting, buoy

handling

Operation Area: Baltic Sea

Class Notation:

Ice Class: 1A Super

20° **Stem Angle:** 58,2 m L_{OA} L_{PP} 48,6 m \boldsymbol{L}_{WL} 52,1 m \mathbf{B}_{m} 12.2 m 12,2 m B_{WL} Н 5,0 m T_{design} 3,8 m

 $T_{\text{scantling}}$

Displacement

DWT

Accommodation:

Open Water Speed:

Main Engine Type/Power: DE-machinery, 3xCAT 3516 B, 4800 kW (3x1600 kW)

Propulsion Type/Power: 2xZ-drive Azimuth thrusters, Rolls-Royce US305FP; 4200 kW (2x2100 kW)

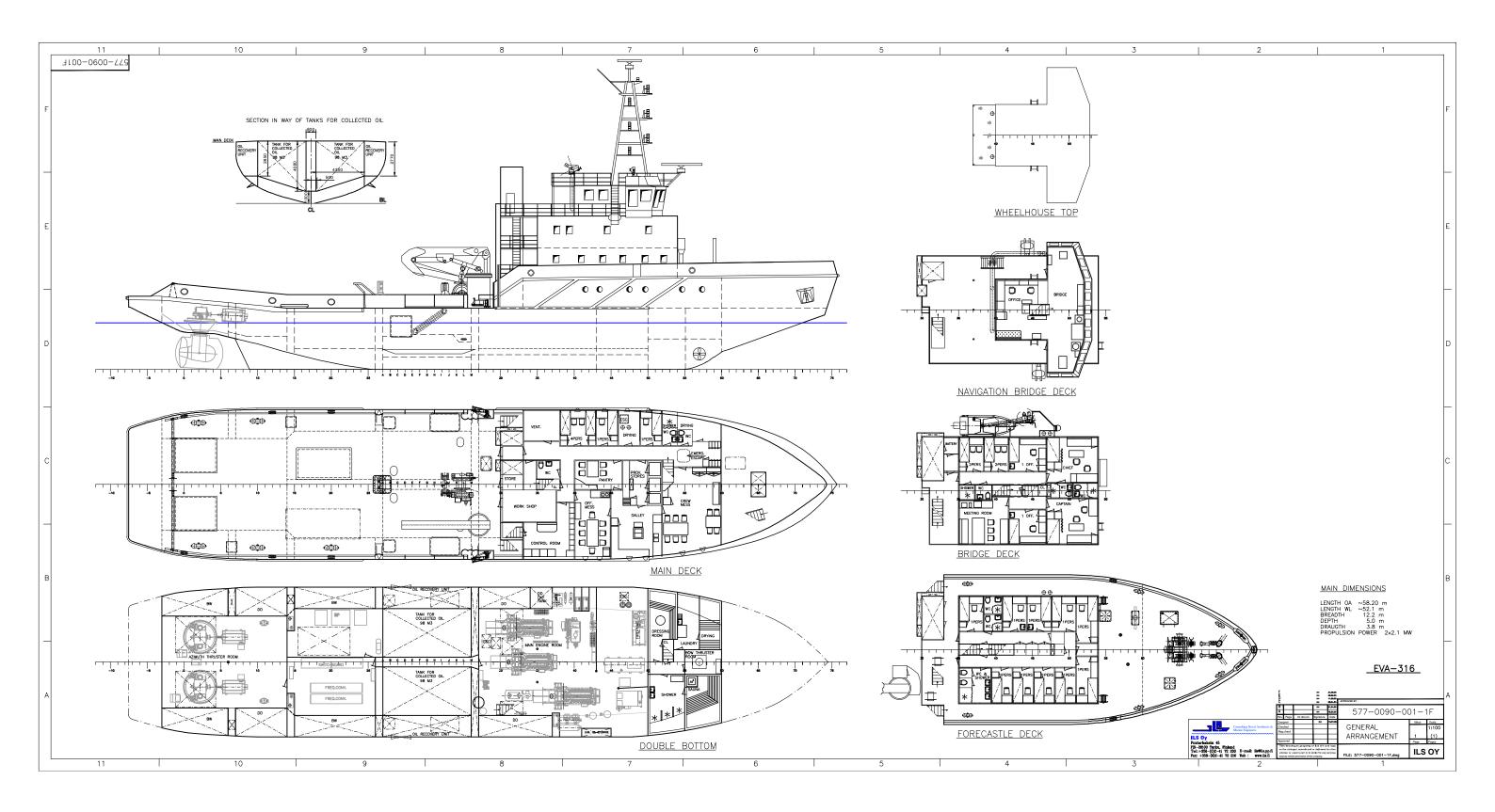
Propellers, Type, Dia: FP-propellers

Bollard Pull:45,3 tBP/BwL:3,7 t/mProp. Power/Bwl:344 kW/m

Ice Performance Ahead: 0,65 m/3 kn

Ice Performance Astern:

Other Icebreaking Characteristics:


Miscellaneous: - Oil recovery tanks 200 m³

- Bow tunnel thruster

- Towing winch
- Deck crane

GA available

SHIP NAME: Fesco Sakhalin

Owner/Operator: Far-Eastern Shipping Company

Builder: Aker Yards Helsinki

Year of Construction: 2005

Contract price:

Ship Type: Icebreaking supply and standby vessel

Operation Area: Sakhalin-1 sector, (Exxon Neftegas)

Class Notation: DNV +1A1, Ice-10 Icebreaker Supply Vessel, Fire Fighter I, OILREC, SF, De Ice,

EO, DYNPOS-AUT, Naut-06, DK(+), HL (2.0)

Ice Class: Ice-10

 $\begin{array}{lll} \textbf{Stem Angle:} & 20^{\circ} \\ \textbf{L}_{\text{OA}} & 99,9 \text{ m} \\ \textbf{L}_{\text{PP}} & 93,5 \text{ m} \end{array}$

 \textbf{L}_{WL}

B_m 20,9

 \mathbf{B}_{WL}

 $\begin{array}{ll} \textbf{H} & 11 \text{ m} \\ \textbf{T}_{\text{design}} & 7,5 \text{ m} \\ \textbf{T}_{\text{scantling}} & 7,5 \text{ m} \end{array}$

Displacement

DWT 4200 t

Accommodation: 40 person max

Open Water Speed: 15 kn

Main Engine Type/Power: 3 x 5800 kW, Wärtsilä 8L38B medium-speed = 17400 kW

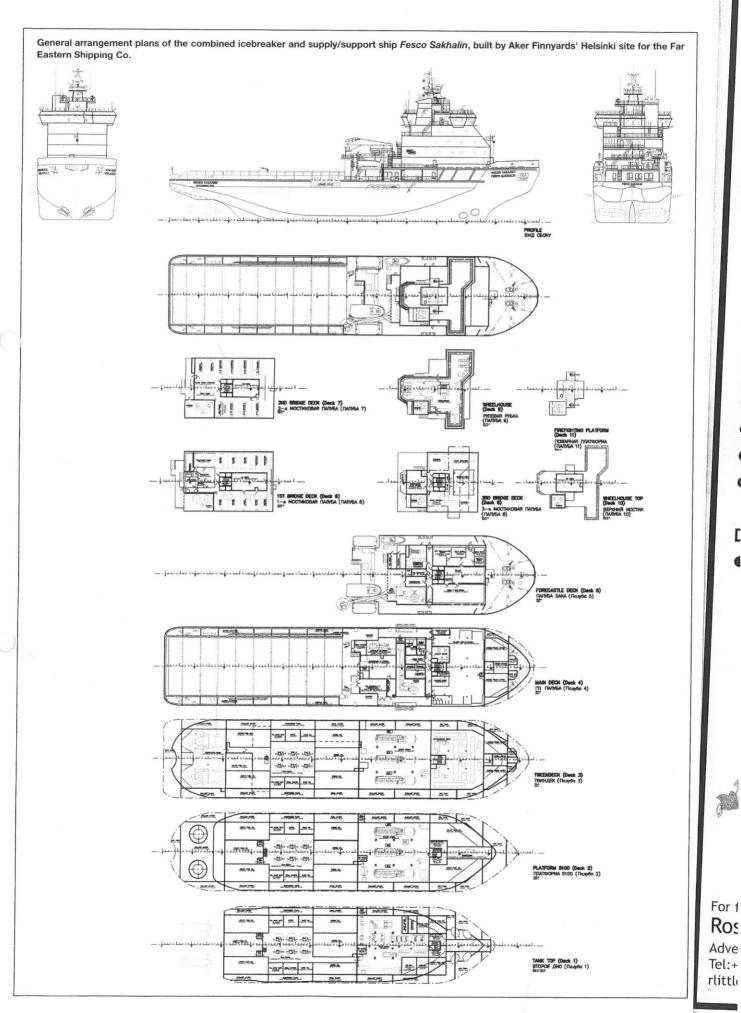
Propulsion Type/Power: Diesel-electric propulsion, Azimuth prop.units 2x6500 kW = 13000 kW, Bow

thrusters 2x1100 kW

Propellers, Type, Dia: 2 x FPP (Azipod)

Bollard Pull: 150 t $\mathbf{BP/B_{WL}}$: 7,2 t/m **Prop. Power/Bwl**: 622 kW/m

Ice Performance Ahead:


Ice Performance Astern: 20 m ridges, 4 m consolidation, 2 kn in 1,5 m level ice

Other Icebreaking Characteristics: DAS

Miscellaneous: GA available

References: Aker Arctic: Icebreaking supply and standby vessel Fesco Sakhalin, vessel brochure. Fesco Sakhalin: supporting Russia's growing offshore oil industry. Ship and Boat International, September/October 2005.

SHIP NAME: USCGC Healy

Owner/Operator: United States Coast Guard

Builder: Avondale shipyard

Year of Construction: 1999

Contract price:

Ship Type: Research icebreaker

Operation Area:

Class Notation:

Ice Class:

Stem Angle:

 $\begin{array}{ccc} \textbf{L}_{\text{OA}} & & 128 \text{ m} \\ \textbf{L}_{\text{PP}} & & 120 \text{ m} \\ \textbf{L}_{\text{WL}} & & 122 \text{ m} \\ \textbf{B}_{\text{m}} & & 25 \text{ m} \\ \textbf{B}_{\text{WL}} & & 24,4 \text{ m} \end{array}$

н

T_{design} 8,92 m

 $T_{\text{scantling}}$

Displacement 17991 t

DWT

Accomodation: 19 officers, 12 CPO, 54 enlisted, 35 scientists, 15 surge, 2 visitors

Open Water Speed: 17 kn max, 12 kn cruising

Main Engine Type/Power: 4 x Sulzer 12ZAV40S, 34560 kW

Propulsion Type/Power: Diesel-electric, two shafts, 22,4 MW

Propellers, Type, Dia: 2 FP, 4 bladed, 4,877 m

 Bollard Pull:
 204 t

 BP/BwL:
 8,37 t/m

 Prop. Power/Bwl:
 919 kW/m

Ice Performance Ahead: 3 kn in 1,4m ice;

Ice Performance Astern: 2,44 m ice backing and ramming

Other Icebreaking Characteristics:

Miscellaneous: Ice performance tests presented in POAC '01 + in Hänninen & Riska, 2001.

References: Hänninen, Saara; Riska, Kaj: Kuvaus USCGC Healyn jäissäkulkukyvystä. Teknillinen Korkeakoulu 2001.

United Stated Coast Guard: USCGC Healy. Available at: http://www.uscg.mil/pacarea/cghealy/default.asp POAC 2001, several publications.

SHIP NAME: LOUHI

Owner/Operator: Finnish Environment Institute/Finnish Navy

Builder: Uudenkaupungin työvene, Finland

Year of Construction: 2011

Contract price: 48 mil EUR

Ship Type: Oil and Chemical Recovery Vessel/Multipurpose Vessel. Also icebreaking,

emergency towing, rescue operations, firefighting, cable laying, fuel transport,

deck cargo capacity

Operation Area: Baltic Sea

Class Notation: GL100A5, E4, NAV-OC, TUG, Marine Pollution Vessel, Chemical Recovery

Vessel, MC, E4, AUT, FF1

Ice Class: 1A Super + extra strengthening

Stem Angle: 20° L_{OA} 71,4 m

 \mathbf{L}_{PP}

 LWL
 67,4 m

 Bm
 14,5 m

 BWL
 14,5 m

 H
 7,0 m

 T_{design}
 5,0 m

 T_{scantling}
 5,2 m

 Displacement
 3450 t

DWT

Accommodation: For 36 persons

Open Water Speed: 15 kn

Main Engine Type/Power: DE-Machinery, 4 pcs Wärtsilä 9L20; 7200 kW (4x1800 kW/1000 rpm)

Propulsion Type/Power: 2xZ-drive Azimuth thrusters, Rolls-Royce US355FP; 5400 kW (2x2700 kW)

Propellers, Type, Dia: FP-propellers
Bollard Pull: over 60 t
BP/B_{WL}: 4,2 t/m
Prop. Power/Bwl: 372 kW/m

Ice Performance Ahead: 3 kn/1m, 8 kn/0,5 m level ice

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: - Oil recovery tanks 1250 m³ including 200m³ chemical recovery tank

- Bow tunnel thruster
- Towing winch Rolls-Royce TW 1500/400 Constant Tension, brake 150 t
- Deck cranes, aft 18,8 t/5m and 5,5 t/20m, fore 1 t/10m

References:

Lamor: Suomen uusin öljyntorjunta-alus. 2011. Available at: http://www.lamor.com/fi/2011/11/suomen-uusin-oljyntorjunta-alus/

Uudenkaupungin Työvene Oy, vessel brochure.

Louhi GA, by ILS Oy

SHIP NAME: USCGC Mackinaw

Owner/Operator: US Coast Guard

Builder: Marinette Marine Corporation

Year of Construction: 2005

Contract price:

Ship Type: Multimission Icebreaker

Operation Area: The Great Lakes

Class Notation:

Ice Class:

Stem Angle:

L_{OA} 73 m

 \boldsymbol{L}_{PP}

 L_{WL}

B_m 17,8 m

 $\boldsymbol{B}_{\text{WL}}$

Н

T_{design} 4,9 m

Tscantling

Displacement 3500 t

DWT

Accommodation: 9 officers, 46 enlisted

Open Water Speed: 16 kn **Main Engine Type/Power:** 6,8 MW

Propulsion Type/Power:

Propellers, Type, Dia: 2 ABB Azipods, fixed pitch, 10' diameter

 Bollard Pull:
 66 t

 BP/B_{WL}:
 3,71 t/m

 Prop. Power/Bwl:
 382 kW/m

Ice Performance Ahead: 3 knots ahead in 0,8 m level ice, 10 kn in 0,35 m, 3 kn in 0,2 m brash ice

Ice Performance Astern: 2 kn astern in 0,75 m level ice, 2 kn in 0,2 m brash ice

Other Icebreaking Characteristics: Ramming Mode: Average 0.5 knots ahead, backing and ramming in 1,1 m solid level ice. Average 0.5 knots ahead, backing and ramming in 1,5 m refrozen brash ice. Average 0.5 knots ahead, backing and ramming a 3,6 m pressure ridge. Fully penetrate a 3 m pressure ridge in 4 rams or less within 30 minutes.

Escort Vessels and Free Beset Vessels: Cast in a 90 m wide channel with a depth of 6,4 m. Back from existing track in 0,75 m solid level ice and 12' brash ice.

Maneuverability:Turn 180 degrees in a 90 m wide channel in 5 minutes in 0,8 m solid level ice and 0,3 m brash ice. Turn 360 in her own length in 0,6 m solid level ice. Break out of track channel and turn 90 degrees within 30 seconds in 0,8 m solid level ice. Arrive and depart a standard berth in 0,8 m solid level ice and 0,3 m brash ice. Extract herself from a stopped position at the end of rams under her own power

Miscellaneous: -

References: US Coast Guard (2004): Great Lakes Icebreaker Replacement. Available at: http://www.uscg.mil/hq/g-a/awl/bclass/glib/glibspecs.htm

Sheinberg, Rubin; Cleary, Christopher; Minnick, Peter V.; Ashley, Adam R. (2005) U.S. Coast Guard Great Lakes Icebreaker Replacement. SNAME Maritime Technology Conference.

Non-public: Riska, Kaj. Lectures V and VI. (Mackinaw h-v curve). ICE II Autumn 2008.

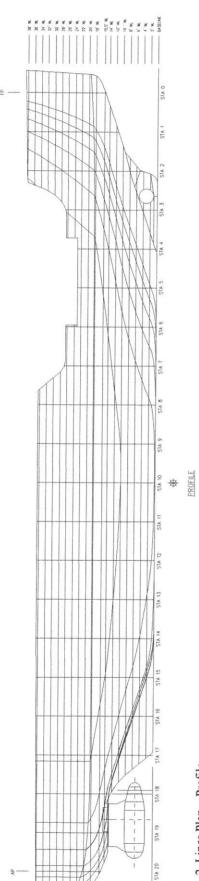


Fig. 2. Lines Plan - Profile

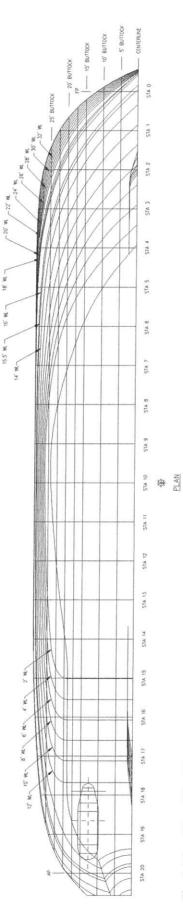
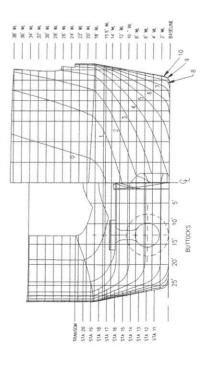



Fig. 3. Lines Plan – Plan View

BODY PLAN Fig. 4. Lines Plan – Section

Paper No. 2005-D03

Table 3. Hull Characteristics		
Length - Overall	73.2 meters	240 feet
Length - Between Perpendiculars	69.2 meters	227 feet
Beam - Maximum	17.7 meters	58 feet
Beam - Design Waterline	17.4 meters	57 feet
Draft - Design Waterline	4.9 meters	16 feet
Longitudinal Center of Gravity (aft of forward perpendicular) 34.7 meters	34.7 meters	114 feet
Longitudinal Center of Flotation (aft of forward perpendicular) 36.3 meters	36.3 meters	119 feet
Full Load Displacement (Icebreaking)	3500 tons	
Block Coefficient	09.0	
Midship Section Coefficient	0.95	
Prismatic Coefficient	0.63	

Sheinberg

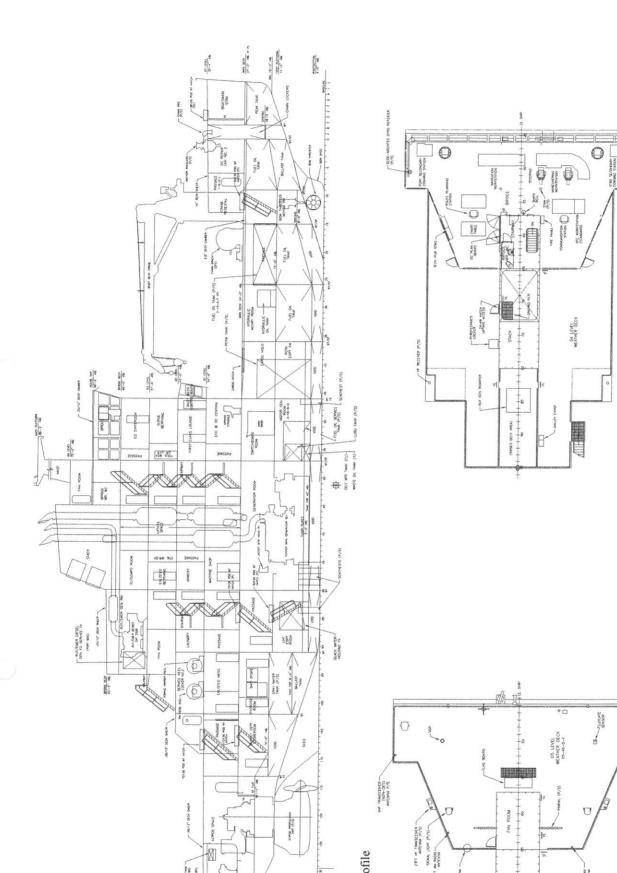


Fig. 5. Inboard Profile

(100 Dec) (100) (100 Dec) (100) (100 Dec) (100) (100 Dec) (100)

93 1CM2

Fig. 6. House Top Paper No. 2005-D03

0

Fig.7. Pilot House Sheinberg

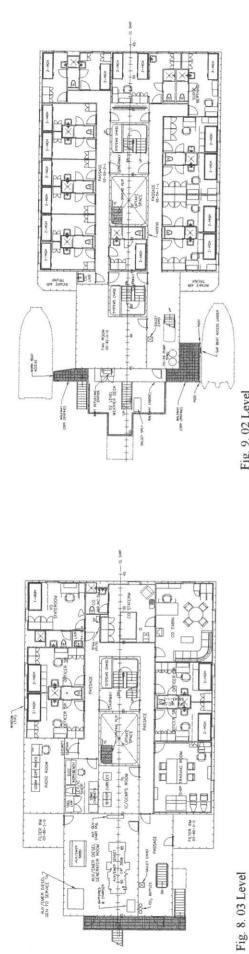


Fig. 9. 02 Level

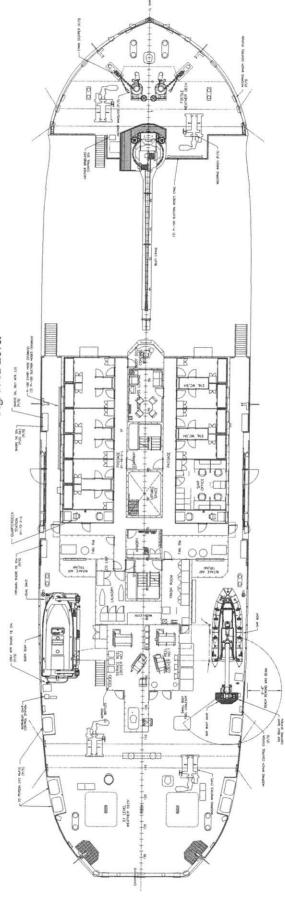


Fig. 10. 01 Level

0000

00 R PASS

Fig. 12. 1st Platform

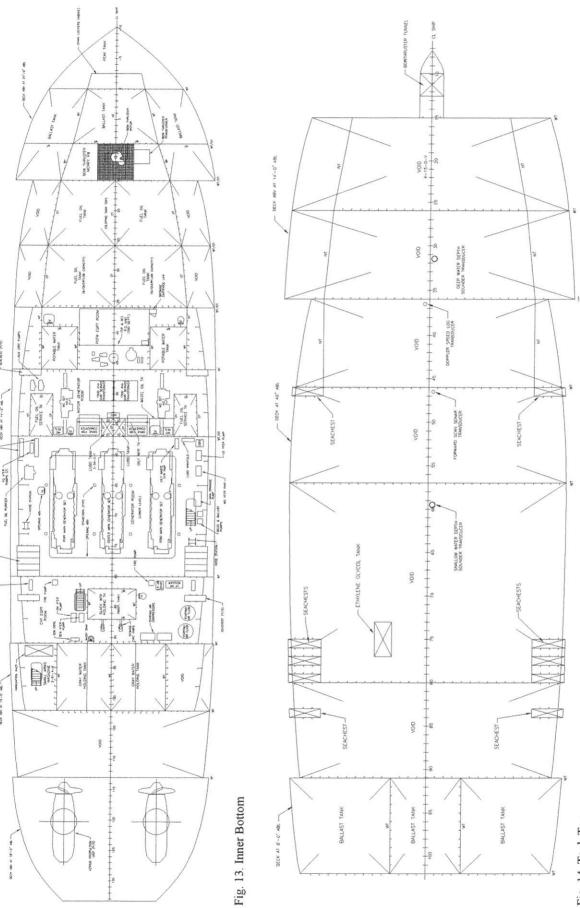


Fig. 14. Tank Top

Sheinberg

SHIP NAME:

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS P-899, 17.2.2014/HE

Moskva

Owner/Operator:	Rosmorport	
Builder:	Baltiysky Savod JSC, St Petersburg	
Year of Construction:	2008	
Contract price:		
Ship Type:	Icebreaker	
Operation Area:	Baltic Sea	
Class Notation:	KM(*) Icebreaker6 [2] AUT1 FF1 EPP	
Ice Class:	Icebreaker 6	
Stem Angle: L _{OA} L _{PP} L _{WL}	114 m	
B_m	27,5 m	
B _{WL} H	12,4 m	
T _{design}	8,5 m	
T _{scantling} Displacement DWT	14300 t 7243 t	
Accomodation:	26 crew	
Open Water Speed:	16 kn	
Main Engine Type/Power:	2 x two cylinder Wärtsilä 32: 2 x 6000 kw + 2 x 9L32: 2x 4500 kW	
Propulsion Type/Power:	16 MW	
Propellers, Type, Dia:	2 Steerprop azimuths, 4 blades	
Bollard Pull: BP/B _{WL} : Prop. Power/Bwl:	N/A	
Ice Performance Ahead:	N/A	
Ice Performance Astern:		
Other Icebreaking Characteristics:		
Miscellaneous: -		

References:

New Baltic icebreakers under construction at Baltiysky Zavod. The Naval Architect. July/August 2005. P. 32.

Pär-Erik Sjöström: Ready for Baltic ice. Shipgaz. No 2, 2009. P. 50

Russian Maritime Register of Shipping: Moskva, vessels details. Available at: http://www.rs-head.spb.ru/app/fleet.php?index=050211&type=book1&language=eng

Steerprop: Press release "Steerprop Ltd delivers the highest power geared azimuth propulsors in the world for a Russian icebreaker". 2005.

SHIP NAME: Pacific Endeavour (Sisters: Pacific Enterprise, Pacific Endurance)

Owner/Operator: Swire Pacific Offshore

Builder: Aker Langsten

Year of Construction: 2006

Contract price:

Ship Type: Icebreaking PSV

Operation Area: Russian Far East

Class Notation: DNV +1A1, E0, Icebreaker ICE-10, DE-ICE, DAT(35), Standby-Vessel (150),

DK(+), HL(2,5), DYNPOS AUTR, OIL-REC

Ice Class: ICE 10

Stem Angle:

L_{OA} 91,5 m **L**_{PP} 77,6 m

 \mathbf{L}_{WL}

B_m 19 m

 \mathbf{B}_{WL}

H 10 m

T_{design} Summer: 8,25 m; Ice: 7,5 m

T_{scantling}

Displacement

DWT 4482 t

Accommodation:

Open Water Speed: 15 kn

Main Engine Type/Power: 4 x RRM Bergen B32:40L9A, 4x4320 kW = 17 MW Propulsion Type/Power: 2 x RRM Aquamaster ARC 2x7000 kW =14 MW

Propellers, Type, Dia:

Bollard Pull:

BP/B_{WL}: 736 kW/m **Prop. Power/Bwl**:

Ice Performance Ahead: > 13 kn in 0,5 level ice, 1,5 kn in 1,5 m level first year ice

Ice Performance Astern:

Other Icebreaking Characteristics: Turning circle: 180 degrees in less than 90s in 0,5 m level first year ice, escort channel 70 m wide in 0,5m level first year ice

Miscellaneous: -

SHIP NAME: Polar Pevek Owner/Operator: Polar Pevek Ltd/Exxon Neftegaz **Builder:** Aker Yards Langsten **Year of Construction:** 2006 **Contract price: Ship Type:** Icebreaker **Operation Area:** Class Notation: 1A1 ICE-10 Icebreaker Tug Fire Fighter SF DEICE RP e0 NAUT-AW Ice Class: Stem Angle: 74,36 m L_{OA} 64,45 m L_{PP} \mathbf{L}_{WL} B_{m} 17 m \mathbf{B}_{WL} Н 8/8,6 m 6,5 m Tdesign 6,25 m Tscantling Displacement **DWT** 1324 t **Accomodation:** 15 crew **Open Water Speed:** Main Engine Type/Power: 4 x RR Bergen Diesel C25:33L9A, 4 x 2505 kW **Propulsion Type/Power:** 2 x ABB V16 Azipod, 2 x 5000 kW Propellers, Type, Dia: **Bollard Pull:** 115 t 6,76 t/m BP/B_{WL}: 588 kW/m Prop. Power/Bwl: **Ice Performance Ahead:** 12 kn in 0,3m ice+10 cm snow, 5,5 kn in 0,9m ice+20 cm snow, 1,6 kn in 1,5 ice+ 20 cm snow **Ice Performance Astern: Other Icebreaking Characteristics:**

Miscellaneous: -

References: Sakhalin icebreakers delivered. Ship & Boat International. May/June 2007. P. 8.

SHIP NAME: BO HAI (EX ROBERT LEMEUR)

Owner/Operator: Bohai Bay Oil Company

Builder:

Year of Construction: 1982

Contract price:

Ship Type: Supported first operations in the Beaufort Sea, designed to supply vessel in

ice.

Operation Area: Worldwide, Arctic

Class Notation:

Ice Class: CASPPR 3

B_{WL} 19,03 m over reamers, reamer width 0,5 m

H 7,5 m

T_{design}

T_{scantling} 5,5 m **Displacement** 5538 t

DWT

Accommodation:

Open Water Speed:

Main Engine Type/Power: 7 060 kW Propulsion Type/Power: 2 shafts

Propellers, Type, Dia: 2 CP-propellers in nozzlez+2 rudders

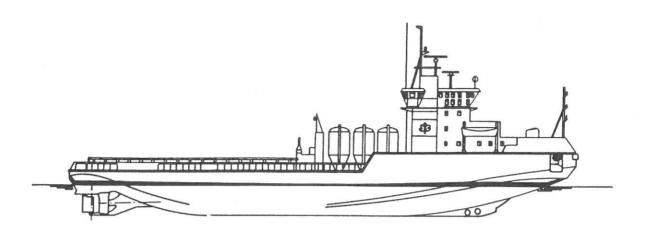
 Bollard Pull:
 107 t

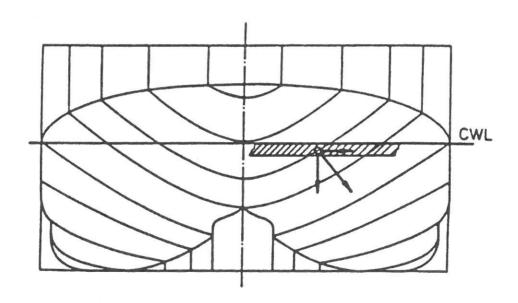
 BP/BwL:
 5,6 t/m

 Prop. Power/Bwl:
 371 kW/m

Ice Performance Ahead: 1,5 m/2 kn level ice

Ice Performance Astern:


Other Icebreaking Characteristics:


Miscellaneous: Lines drawing available

References: Schwarz, J. (1986). Some latest developments in icebreaker technology. Journal of Energy Resources Technology. Vol. 108, June 1986, p. 161-167.

IB ROBERT LEMEUR

 L_{wL}

= 79.1 m

 \mathbf{B}_{wL}

= 19.0 m

 T_{WL}

= 5.7 m

Δ

= 5853 t

Shaft power = 7 065 kW

Data from Schwarz (1986).

SHIP NAME: Fennica, Nordica
Owner/Operator: Arctia Offshore
Builder: Finnyards, Rauma

Year of Construction: 1993

Contract price:

Ship Type: Icebreaker & multipurpose Support

Operation Area: Worldwide

Class Notation: DNV +1A1, Tug, Supply Vessel, SF, Icebreaker Polar-10, HELDK, EPR, E0,

DYNPOS AUTR

Ice Class: Polar- 10

Stem Angle: 22° L_{OA} 116m

 \mathbf{L}_{PP}

 L_{WL} 96,7 m B_m 26 m

 \mathbf{B}_{WL}

Н

 T_{design} 7/8,4 m

T_{scantling}

Displacement 12800 t

DWT 1650/4800 t

Accommodation: Total 77 persons

Open Water Speed: 16,5 kn

Main Engine Type/Power: 2 x Wärtsilä 16V32D, 2x Wärtsilä 12V32D (2x6000 kW, 2x 4500 kW)=21 MW

Propulsion Type/Power: 2 x Aquamaster US ARC 1, 2x 7500 kW = 15 MW

Propellers, Type, Dia: 2 azimuthing

Bollard Pull:234 tBP/BwL:9 t/mProp. Power/Bwl:576 t/kW

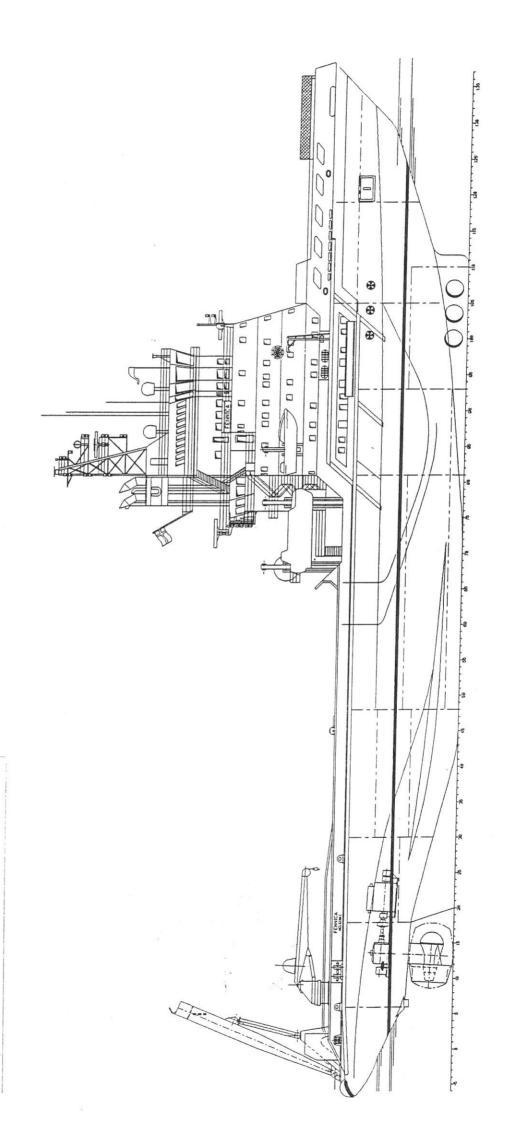
Ice Performance Ahead: 9 kn in 0,8 meter level ice

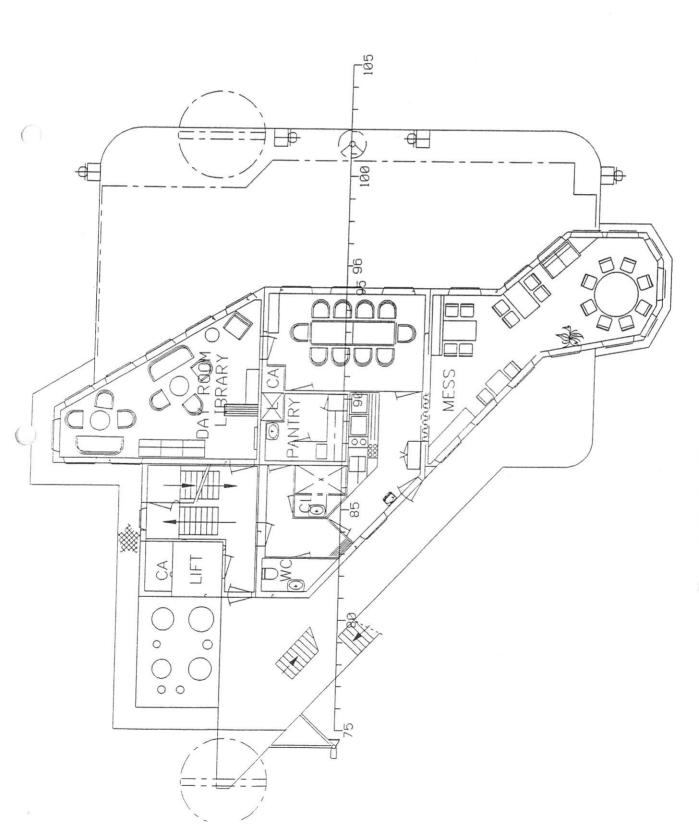
Ice Performance Astern:

Other Icebreaking Characteristics:

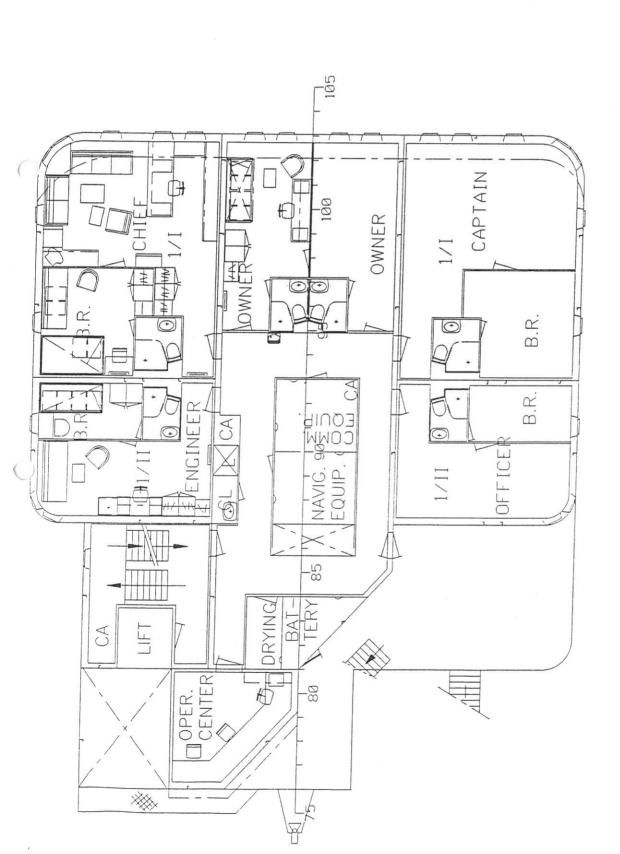
Miscellaneous: -

References:

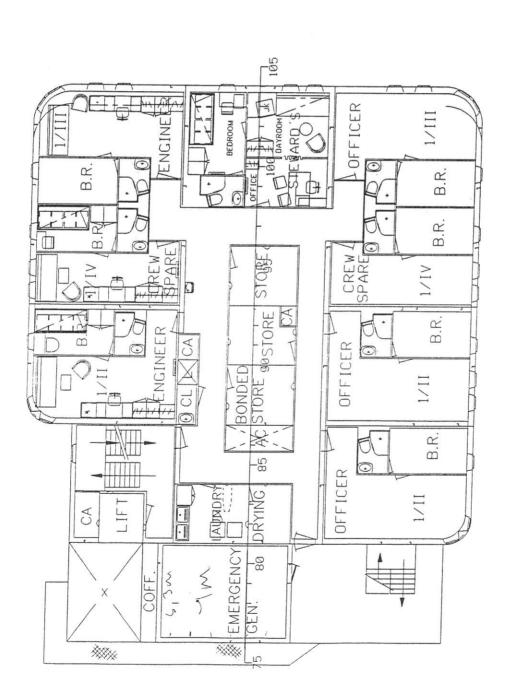

Soininen, Harri; Nyman, Tapio; Riska, Kaj; Lohi, Paavo; Harjula, Arjo (1993): The Ice capability of the Multipurpose Icebreaker "Fennica" – full-scale results. POAC '93 proceedings.

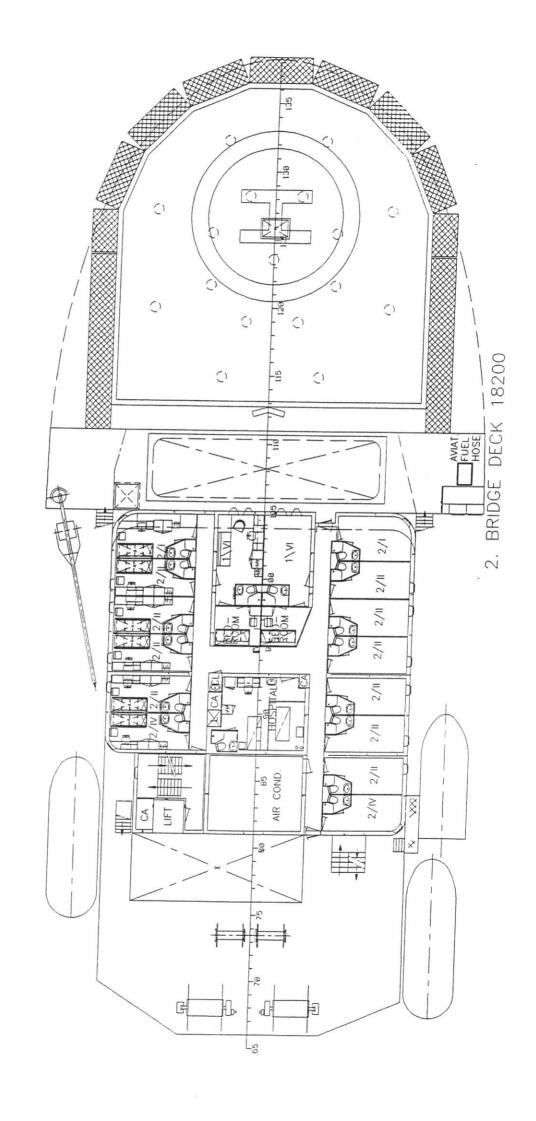

Lohi, Paavo; Soininen, Harri; Keinonen, Arno (1994): MSV Fennica, a novel icebreaker concept. Icetech '94.

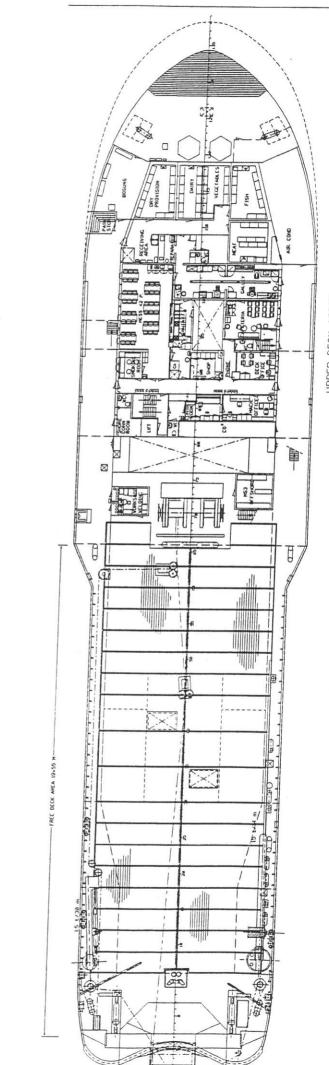
Harjula, Arjo; Eronen, Harri (1994): MSV Fennica, new operational profile for an icebreaker. Icetech '94.

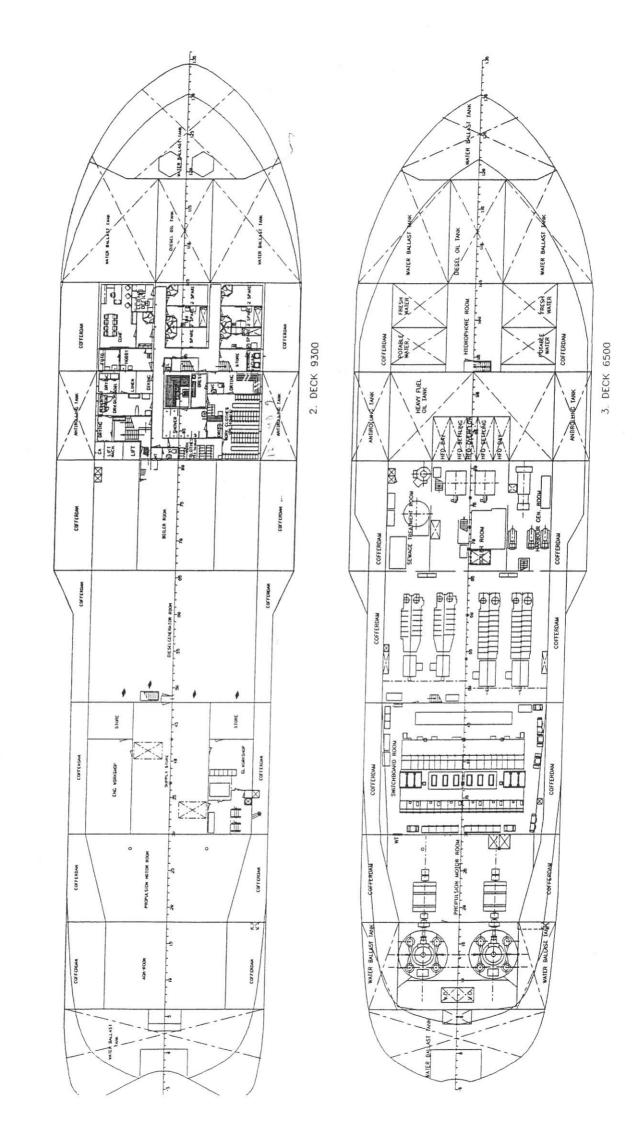

FINNYARDS7

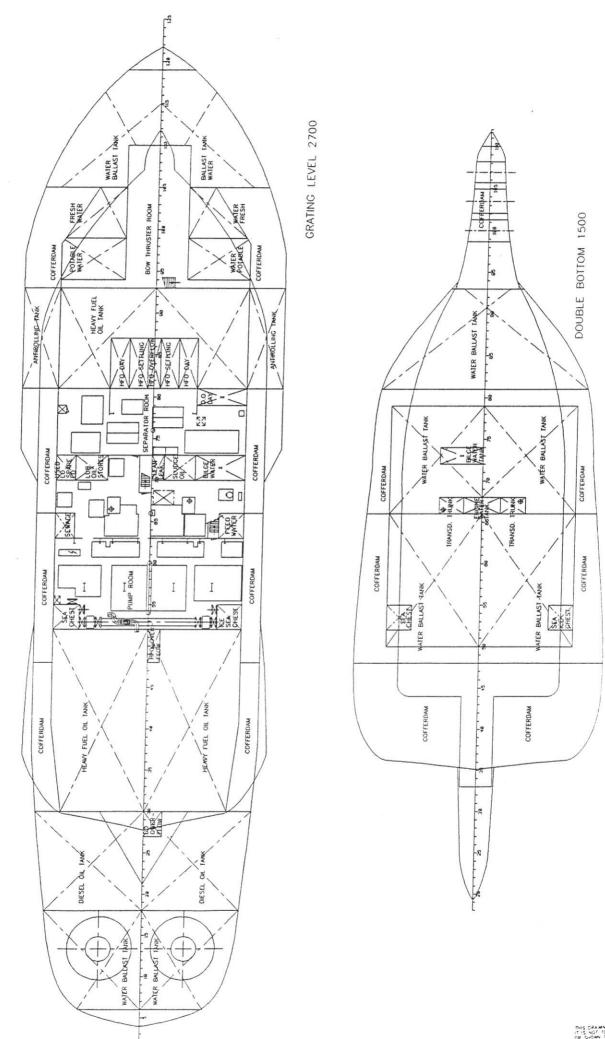
FINNYARDS LTD P.O. Box 139 SF-26101 RAUMA, FINLAND Tel. +358 38 83611 Fax +358 38 8362366 Telex 65112 fyard sf




5. BRIDGE DECK 26300


4. BRIDGE DECK 23600


3. BRIDGE DECK 20900



1. BRIDGE DECK 15500

UPPER DECK 12500

SHIP NAME: SVALBARD

Owner/Operator: Royal Norwegian Navy Material Command

Builder: Langsten AS, Norway

Year of Construction: 2001

Contract price: 575¹⁾ mNOK ¹⁾w/o navig. and comm. systems and armament

Ship Type: Icebreaking Coast Guard Vessel, patrolling (economic zone, fisheries area)

around Jan Meyen and Svalbard, winter northern parts of the Barents Sea as an icebreaker, tug and heli platform. Pollution control and SAR operations,

research and expedition and support tasks.

Operation Area: Worldwide, see above

Class Notation: DNV 1A1, Icebreaker POLAR 10, RPS, F-A, E0, HELDK-SH, DEICE, FiFi 1

Ice Class: DNV Icebreaker POLAR 10

 \mathbf{L}_{WL}

 $\begin{array}{lll} \textbf{B}_{\textbf{m}} & & 19,1 \text{ m} \\ \textbf{B}_{\textbf{WL}} & & 18,6 \text{ m} \\ \textbf{H} & & 8,3 \text{ m} \\ \textbf{T}_{\textbf{design}} & & 6,5 \text{ m} \end{array}$

Tscantling

Displacement

DWT

Accommodation: For 48 persons, high pressure and gas-defense

Open Water Speed: 17 kn

Main Engine Type/Power: DE-Machinery, 4 pcs Bergen Diesel BRG-8; 13 560 kW (4x3390 kW/720 rpm)

Propulsion Type/Power: 2 x pod azimuth thrusters, Azipod 10 000 kW (2x5000 kW)

Propellers, Type, Dia: FP-propellers

Bollard Pull: 100 t
BP/B_{WL} 5,4 t/m
Prop. Power/Bwl: 538 kW/m

Ice Performance Ahead: 1,0 m / 3 kn level ice

Ice Performance Astern:

Other Icebreaking Characteristics:

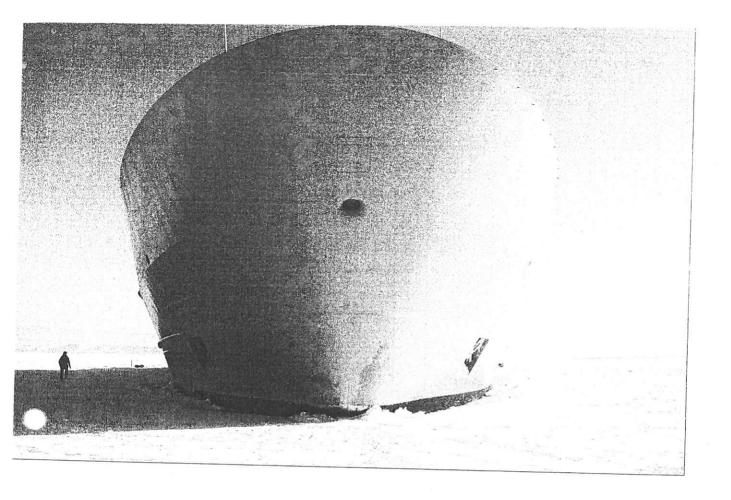
Miscellaneous: - De-icing capacity 1500 kW, 17 km heating cables

- forward tunnel thruster 2180 kW

- Towing winch 100t, 30 t pull

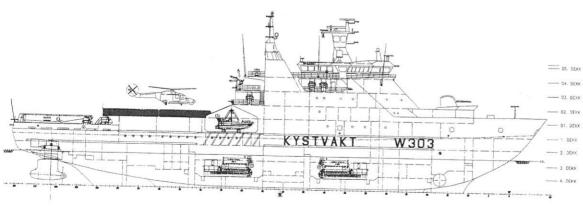
- Deck crane 12 t/17,5 m

- FiFi 1 system: 2x1200 m³/h


- Helideck

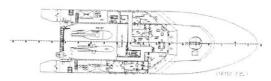
References: Aker Yards Langsten: Yard no 182 Svalbard. Brochure. (GA)

Svalbard: the most powerful Norwegian ice breaker yet? Significant Small Ships of 2002.


Bakka Jr, Dag: Norwegian coast guard vessel for Arctic conditions. *Scandinavian Shipping Gazette*. January 25, 2002. P. 52-53

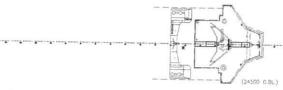
THE VESSEL PRIMARY TASKS

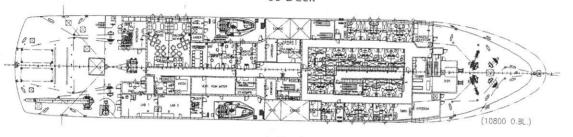
Fishery inspection Enforcement of sovereignty Search and rescue service Environment protection Support tasks Research and expedition Icebreaking

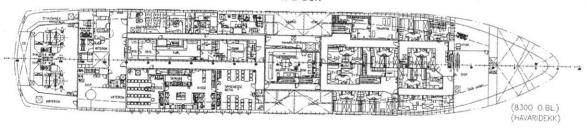

GENERAL ARRANGEMENT

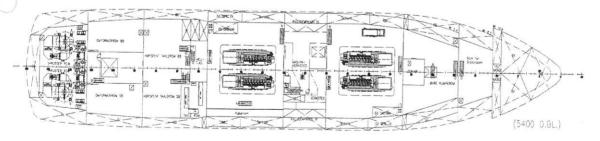
PROFILE

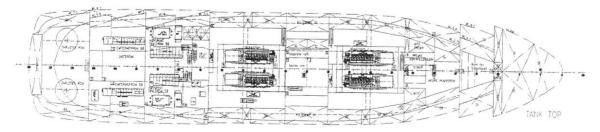
01 Deck


02 Deck


03 Deck


04 Deck


05 Deck


1. Deck

2. Deck

3. Deck

4. Deck

SHIP NAME:	Svitzer Sakhalin/Svitzer Korsakov/Svitzer Busse/Svitzer
AnivaOwner/Operator:	Svitzer
Builder:	Admiralteyskiy Sudostroitelnyy Zavod, St Petersburg
Year of Construction:	2 007
Contract price:	
Ship Type:	Tug
Operation Area:	Sakhalin II
Class Notation:	Lloyds +100A1, Ice 1A Super, FiFi 1
Ice Class:	IA Super
Stem Angle:	
L _{OA}	35,3 m
L _{PP}	34,5 m
L _{WL}	
B _m	13 m
B _{WL}	
Н	
T _{design}	5,7 m
T _{scantling}	
Displacement	
DWT	
Accommodation:	Six single
Open Water Speed:	12 kn
Main Engine Type/Power:	2 x Bergen C25:33L9P 2395 kW =4,8 MW
Propulsion Type/Power:	
Propellers, Type, Dia:	2 Aquamaster
Bollard Pull:	>75 t
BP/B _{WL} :	5,76 t/m
Prop. Power/Bwl:	369 kW/m
Ice Performance Ahead:	
Ice Performance Astern:	
Other Icebreaking Characteristics:	
Miscellaneous: -	

References:

Russian-built Svitzer tugs to serve Sakhalin II. *Scandinavian Shipping Gazette*. 2008. Available at: http://www.shipgaz.com/old/magazine/issues/2008/02/0208 article3.php

Sakhalin – ice management. ICE FOCUS Supplement. Aprill 2009.

SHIP NAME: TOBOY
Owner/Operator: Lukoil

Builder: Keppel Singmarine, Singapore

Year of Construction: 2008

Contract price:

Ship Type: Multipurpose Icebreaking Supply Vessel. Also oil recovery, firefighting, FW and

FO supply and deck cargo capacity

Operation Area: Worldwide, Pechora Sea Varandey terminal

Class Notation: RMRS KM*LU7 (1) A1 Supply Vessel

Ice Class: LU7

 \mathbf{L}_{WL}

 $\begin{array}{lll} \textbf{B}_{\textbf{m}} & 18,5 \text{ m} \\ \textbf{B}_{\textbf{WL}} & 18,0 \text{ m} \\ \textbf{H} & 11,2 \text{ m} \\ \textbf{T}_{\textbf{design}} & 9,1 \text{m} \\ \textbf{T}_{\textbf{scantling}} & 9,3 \text{ m} \end{array}$

Displacement

DWT 2169 t

Accommodation: For 24 persons

Open Water Speed: 15 kn

Main Engine Type/Power: DE-Machinery, 3 pcs Wärtsilä 9V32; 12 960 kW (3x4320 kW/720 rpm)

Propulsion Type/Power: 2xZ-drive Azimuth thrusters, Steerprop 10 400 kW (2x5200 kW)

Propellers, Type, Dia: FP-propellers, dia 4 m

Bollard Pull:

BP/B_{WL}

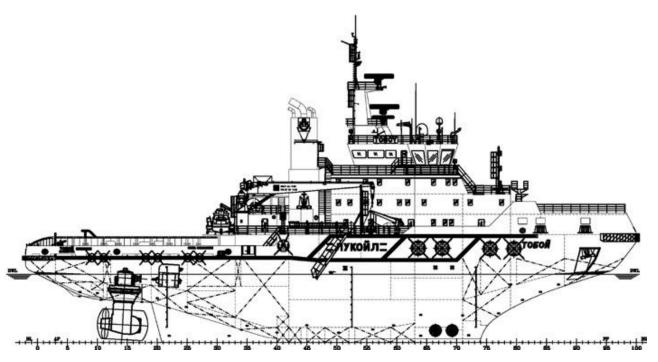
Prop. Power/Bwl: 578 kW/m

Ice Performance Ahead: 1,5 m level ice + 20 cm snow / 3 kn

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: - Oil recovery tank 146 m³


- 2 forward tunnel thrusters 2x600 kW

- Towing winch

- Deck crane 10 t/17,5 m

- FiFi 1 system: 2x1200 m³/h

References:

Keppel Singmarine: Toboy brochure. (source for the pictures)

Non-public: GA from ILS OY.

SHIP NAME: VARANDEY

Owner/Operator: Lukoil

Builder: Keppel Singmarine, Singapore

Year of Construction: 2008

Contract price:

Ship Type: Multipurpose Icebreaker. Also oil recovery, firefighting, rescue, FW and FO

supply and deck cargo capacity

Operation Area: Worldwide, Pechora Sea Varandey terminal

Class Notation: RMRS KM*LL7 (2) A1 Icebreaker Tug

Ice Class: LL7

 Stem Angle:
 18°

 LOA
 100,0 m

 LPP
 88,8 m

 \mathbf{L}_{WL}

 $\begin{array}{cccc} B_m & & 21,7 \text{ m} \\ B_{WL} & & 21,0 \text{ m} \\ H & & 13,3 \text{ m} \\ T_{design} & & 10,5 \text{ m} \\ T_{scantling} & & 10,6 \text{ m} \end{array}$

Displacement

DWT 4463 t

Accommodation: For 28 persons

Open Water Speed: 15 kn

Main Engine Type/Power:DE-Machinery, 4 pcs Wärtsilä12V32; 23 000 kW (4x5760 kW/720 rpm)Propulsion Type/Power:2xZ-drive Azimuth thrusters, SteerpropSPO 4,5 ARC 16 800 kW (2x8400 kW)

Propellers, Type, Dia: FP-propellers

Bollard Pull: N/A

BP/B_{WL}

Prop. Power/Bwl: 800 kW/m

Ice Performance Ahead: 1,7 m level ice + 20 cm snow / 3 kn

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: - Oil recovery tanks 500 m³

- 2 forward tunnel thrusters

- Towing winch

- Deck crane 10 t/17,5 m

- FiFi 1 system: 2x1200 m³/h

References:

Keppel Singmarine: Varandey brochure.

Non-public: GA from ILS Oy.

SHIP NAME: Vitus Bering, Aleksey Chirikov

Owner/Operator: Sovcomflot

Builder: Arctech Helsinki Shipyard

Year of Construction: 2013

Contract price:

Ship Type: Multifunctional icebreaking supply vessel

Operation Area: Sakhalin 1

Class Notation: LR +100A1 Icebreaker, Offshore Tug/Supply Ship, Fire-fighting Ship 1, WDL,

RD, IWS*, Winterisation H(-35) B(-35), +LMC, UMS, DP (AM), NAV1, OIL

RECOVERY, EP, ShipRight ACS(B)

Ice Class:

Stem Angle:

L_{OA} 99,9 m

 \mathbf{L}_{PP}

 L_{WL} 93,9 m B_m 21,7 m

 $\boldsymbol{B}_{\text{WL}}$

Н

 T_{design} 7,6 m

 $T_{\text{scantling}}$

Displacement

DWT 3950 t

Accomodation: 22 crew, 28 special persons, 195 evacuees

Open Water Speed: 15 kn

Main Engine Type/Power: 18 MW

Propulsion Type/Power: 13 MW

Propellers, Type, Dia: Azimuthing

Bollard Pull: >128 t

BP/B_{WL}: 5,9 t/m

Prop. Power/Bwl: 599 kW/m

Ice Performance Ahead: 3 kn in 1,5 m level ice, operate independently in 1,7 m level ice

Ice Performance Astern:

Other Icebreaking Characteristics: Penetrate consolidated 20 m ice ridges

Miscellaneous: -

References: Arctech: Multifunctional icebreaking supply vessels Vitus Bering and Aleksey Chirikov. Brochure. Available at: http://arctech.fi/wp-content/uploads/NB506-507_EN_2013_www.pdf

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS

WINMOS P-899, 17.2.2014/HE

SHIP NAME: Vladimir Ignatyuk (formerly Arctic Kalvik)

Owner/Operator: Murmansk Shipping Co.

Burrard Yarrows Co. Canada

Year of Construction: 1983

Contract price:

Ship Type: Multi icebreaker/ Icebreaking AHTS

Operation Area: Barents Sea

Class Notation: Lloyd's Register of Shipping + 100 A1 Icebreaker Tug + LMC

Ice Class: Icebreaker 7, IA Super

 Stem Angle:
 25°

 LOA
 88

 LPP
 75

 \textbf{L}_{WL}

B_m 17,82

 $\boldsymbol{B}_{\text{WL}}$

H 10 m **T**_{design} 8,3 m

 $\textbf{T}_{\text{scantling}}$

Displacement 7077 t DWT 1933 t

Accomodation: 24 crew + 10

Open Water Speed: 15,5 kn

Main Engine Type/Power: 4 8TM410 Stork Werkspoor Diesel, 4175 kW each = 16700 kW

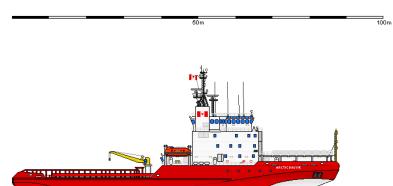
Propulsion Type/Power: Twin open screws/ single rudder = 17300 kW

Propellers, Type, Dia: 2 CPP 4 blades, Bow thruster: CPP 18 t, Stern thruster: CPP 5 t

 Bollard Pull:
 220 t

 BP/Bm (B_{WL}):
 12,3 t/m

 Prop. Power/Bm(Bwl):
 970 kW/m


Ice Performance Ahead: 3 kn in 1,2 m ice

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: -

Canada, IB Arctic Kalvik (1982-2003)

www.shipbucket.com

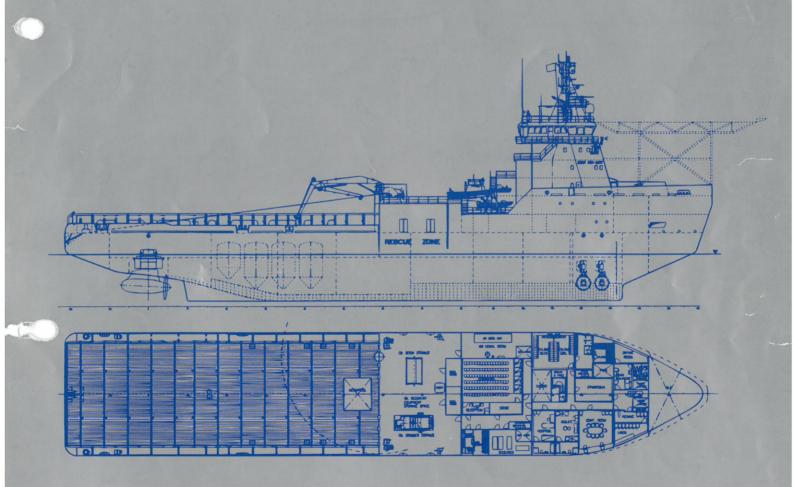
References: Wikipedia: Vladimir Ignatyuk. Available at: http://en.wikipedia.org/wiki/Vladimir_Ignatyuk (icebreaker)

Murmansk Shipping Company: Icebreakers. Available at: http://msco.ru/en/fleet/ice-breaker

SHIP NAME: Vladislav Strizhov Owner/Operator: CJSC Sevmorneftegas **Builder:** Aker Yards Soviknes **Year of Construction:** 2006 **Contract price: Ship Type:** Multipurpose icebreaking supply vessel **Operation Area:** Prirazlomnoye, Barents Sea Class Notation: DNV and Russian Maritime Register of Shipping: 1A1 ICE-15 Icebreaker Tug Supply Vessle Standby Vessel(S) Fire Fighter I OILREC SF DEICE E0 DYNPOS-AUTS NAUT-OC CLEAN DAT(-40C) DK(+) HL(2.0) Ice Class: Stem Angle: 99,3 m Loa \mathbf{L}_{PP} 84,39 m LwL 19 m \mathbf{B}_{m} \mathbf{B}_{WL} Н 10,5 m T_{design} 8 m T_{scantling} Displacement **DWT** 2500 t **Accommodation:** 21 single cabins, 5 four person cabins **Open Water Speed:** 15 kn Main Engine Type/Power: 2 x Wärtsilä 12V32 6000 kW, 2 x 8L32 4000 kW; total 20MW **Propulsion Type/Power:** 2 x Azipod V16 7500 kW, total 15 MW Propellers, Type, Dia: Azipod **Bollard Pull:** 170 t BP/B_{WL}: 8,95 t/m Prop. Power/Bwl: 789 kW/m **Ice Performance Ahead:** 10 kn in 80 cm ice, 2 kn in 1,5 m ice **Ice Performance Astern:**

Miscellaneous: -

Other Icebreaking Characteristics:


References:

Foxwell, David: Krylov expertise gives Moss designs a Russian flavor. *Offshore journal*. 2nd quarter 2004. P. 21.

Baltiysky Zavod: Multipurpose icebreaking supply vessel MOSS 828-MISV. Brochure.

BALTIYSKY ZAVOD JSC 16, Kosaya Liniya, St.Petersburg 199106, Russia phone (812) 324-92-54 fax (812) 327-71-84 e-mail: marketing@bz.ru www.bz.ru

MULTIPURPOSE ICEBREAKING SUPPLY VESSEL MOSS 828-MISV

SHIP NAME: Arctic Offshore Patrol Ship (AOPS)

Owner/Operator: Royal Canadian Navy

Builder: Irving Shipbuilding

Year of Construction: 2018

Contract price: 288 million dollars

Ship Type: Multiseason patrol ship

Operation Area: Canadian Arctic

Class Notation:

Ice Class:

 Stem Angle:
 38°

 L_{OA}
 98 m

 \mathbf{L}_{PP}

 \mathbf{L}_{WL}

B_m 19 m

 B_{WL}

Н

 T_{design} 5,75 m

T_{scantling}

Displacement 5874 t

DWT

Accommodation: 45 normal + 20 additional + 20 embarked force

Open Water Speed:

Main Engine Type/Power:

Propulsion Type/Power: 2 x 4500 kW

Propellers, Type, Dia: 2

Bollard Pull: BP/B_{WL}:

Prop. Power/Bwl:

Ice Performance Ahead: Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: GA/Linedrawing available

References: Canadian American Strategic Review: Comparing Arctic Ship Procurement – or a tale of two icebreakers: Canada's AOPS and Russian Arctic Rescue and Salvage ship purchase. 2013. Available at:

http://www.casr.ca/as-arctic-sar-ships.htm

Non-public: GA/Linedrawing available.

SHIP NAME: Baltika

Owner/Operator: Rosmorrechflot/ Russian Marine Emergency Rescue Service

Builder: Arctech Helsinki Shipyard

Year of Construction: 2014

Contract price: 76 million euro

Ship Type: Oblique icebreaker

Operation Area: Harbours

Class Notation: KM * Icebreaker6, [1], AUT1-ICS, OMBO, FF3WS, EPP, DYNPOS-1, ECO-S, Oil

recovery ship (>60C), Salvage ship, Tug, HELIDECK

Ice Class: Icebreaker 6

N/A **Stem Angle** 76,4 m Loa L_{PP} N/A 72,1 m \mathbf{L}_{WL} B_{m} 20,5 m N/A \mathbf{B}_{WL} Н N/A **6,3** m **T**design N/A T_{scantling} Displacement N/A **DWT** 1150 **t**

Accomodation: 24 crew, 36 total

Open Water Speed: 14 kn

Main Engine Type/Power: 9,0 MW (3 x 3000 kW Rolls Royce)

Propulsion Type/Power: 7,5 MW (3 x 2500 kW) **Propellers, Type, Dia:** Three azimuth thrusters

Bollard Pull: N/A
BP/B_{WL}: N/A
Prop. Power/(Bwl) B: 366 kW/m

Ice Performance Ahead: 3 kn in 1.0 m level ice Ice Performance Astern: 3 kn in 1.0 m level ice

Other Icebreaking Characteristics: 50 meter channel in 60 cm ice, sideways operation Miscellaneous: -

References: Arctech: Icebreaking multipurpose emergency and rescue vessel. Brochure.

SHIP NAME:	CCGS John G. Diefenbaker
Owner/Operator:	Government of Canada/Canadian Coast Guard
Builder:	Seaspan Marine Corporation
Year of Construction:	2020s
Contract price:	1,3 billion
Ship Type:	Canadian Coast Guard Icebreaker
Operation Area:	
Class Notation:	
Ice Class:	PC2
Stem Angle: L _{OA} L _{PP} L _{WL}	149 m
B_{m}	28 m
B _{WL} H T _{design}	13,5 m 10,5 m
T _{scantling} Displacement DWT	23700 t
Accomodation:	60 core crew, 40 program personnel
Open Water Speed: Main Engine Type/Power: Propulsion Type/Power: Propellers, Type, Dia:	18 kn max 5 diesel engines, 42 MW Diesel-electris; three shafts 3 x 12 MW
Bollard Pull: BP/B _{WL} : Prop. Power/Bwl:	
Ice Performance Ahead:	3 kn in 2,5 m ice + 30 cm snow
Ice Performance Astern:	
Other Icebreaking Characteristics:	
Miscellaneous: -	

SHIP NAME: Kemin Karhu

Owner/Operator: Arctia Karhu

Builder: Uudenkaupungin Työvene

Year of Construction: 2014

Contract price: 10 million euro

Ship Type: Escort tug harbor icebreaker

Operation Area: Bay of Bothnia

Class Notation: Bureau Veritas I + HULL + MACH Tug, Escort Tug Unrestricted Navigation ICE

1ASuper, +AUT-UMS

Ice Class: 1A Super

Stem Angle: 30° L_{OA} 40 m

 \boldsymbol{L}_{PP}

 L_{WL} 37,8 m B_m 12,8 m

 $\boldsymbol{B}_{\text{WL}}$

 H
 7,75 m

 T_{design}
 4,7 m

 T_{scantling}
 5,0 m

Displacement

DWT 200 t

Accomodation: 8 crew

Open Water Speed: Max 12 kn

Main Engine Type/Power: 2 x Wärtsilä 9L20, total 3600 kW

Propulsion Type/Power: Two azimuth propulsion units Rolls Royce US 305 CP

Propellers, Type, Dia: 2 FP

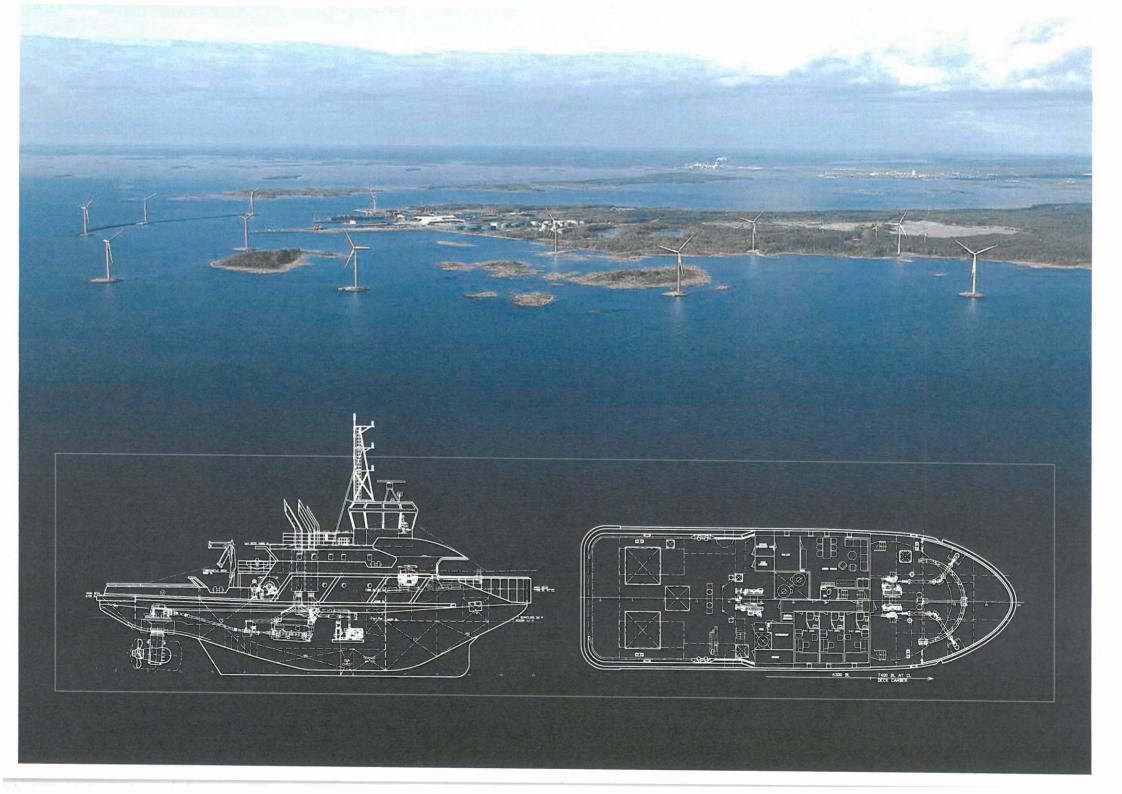
Bollard Pull: BP/B_{WL}:

Prop. Power/Bwl:

Ice Performance Ahead: 3 kn in 60 cm packed channel, 0,7 m level ice at 3 kn

Ice Performance Astern: 6 kn in 0,3 m level ice

Other Icebreaking Characteristics: 180 degrees in 0,3 m level ice in 3 minutes


Miscellaneous: -

References:

Arctia Karhu brochure.

Non-public: GA by ILS OY.

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS P-899, 17.2.2014/HE

Kronprins Haakon

Owner/Operator:	Norwegian Institute of Marine Research	
Builder:	Fincantieri Italy, VARD Norway	
Year of Construction:	2016	
Contract price:	175 mil euro	
Ship Type:	Polar research vessel/icebreaker	
Operation Area:	The Arctic	
Class Notation:		
Ice Class:	Polar 10	
Stem Angle:		
L _{OA}	>100 m	
L _{PP} L _{WL}		
B _m	21 m	
B_{WL}		
H		
T _{design}		
T _{scantling} Displacement		
DWT		
Accomodation:	55 persons in 38 cabins	
Open Water Speed:		
Main Engine Type/Power:		
Propulsion Type/Power:		
Propellers, Type, Dia:		
Bollard Pull:		
BP/B _{WL} : Prop. Power/Bwl:		
riop. rower/bwi.		
Ice Performance Ahead:		
Ice Performance Astern: Other Icebreaking Characteristics:		
Miscellaneous: References: MarineLink.com: Fincantieri to Build new Norwegian polar institute ship. Available at: http://www.marinelink.com/news/fincantieri-norwegian361540.aspx		

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS

WINMOS P-899, 17.2.2014/HE

SHIP NAME:	LK-60 (Arktika?)
Owner/Operator:	JSC Atomflot
Builder:	Baltiysky Zavod

Year of Construction: 2017

Contract price: 37 billion RUB (1,2 billion US dollars)

Ship Type: Nuclear icebreaker

Operation Area: The Arctic and Siberian rivers

Class Notation:

Ice Class: 9

Stem Angle:

L_{OA} 173 m

 \boldsymbol{L}_{PP}

 \textbf{L}_{WL}

B_m 34 m

B_{WL}

T_{design} 8,5 m to 10,8 m

T_{scantling}

Displacement

DWT

Accomodation:

Open Water Speed:

Main Engine Type/Power: Propulsion Type/Power: Propellers, Type, Dia: 2

Bollard Pull: BP/B_{WL}:

Prop. Power/Bwl:

Ice Performance Ahead: Break 3 m thick ice.

Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: -

References: Pettersen, Trude: Three new nuclear icebreakers in the pipeline. *Barents Observer*. 2012. Available at: http://barentsobserver.com/en/arctic/three-new-nuclear-icebreakers-pipeline-14-11

RT: Russia lays down world's largest icebreaker. 2014. Available at: http://rt.com/news/world-biggest-icebreaker-russia-275/

SHIP NAME:	Murmansk
Owner/Operator:	Rosmorport
Builder:	Arctech Helsinki Shipyard
Year of Construction:	2015
Contract price:	
Ship Type:	Icebreaker
Operation Area:	Baltic Sea/Arctic Seas
Class Notation:	KM * Icebreaker6 [2] AUT1-ICS FF2 EPP ECO BWM HELIDECK Special Purpose
	ship
Ice Class:	Icebreaker 7
Stem Angle:	110.0 m
L _{OA}	119,8 m
L _{PP}	104 m
B _m	27,5 m
B _{WL}	
Н	
T _{design}	8,5 m
T _{scantling}	
Displacement	
DWT	5430 t
Accomodation:	36 crew + 22 special personnel
Open Water Speed:	17 kn
Main Engine Type/Power:	4 main diesel generator set, 27 MW
Propulsion Type/Power: Propellers, Type, Dia: Bollard Pull: BP/B _{WL} : Prop. Power/Bwl:	2 azimuth thrusters, 18 MW
Ice Performance Ahead:	3,5 kn in 1.5 m level ice
Ice Performance Astern:	
Other Icebreaking Characte	ristics:
Miscellaneous:	

SHIP NAME:

Owner/Operator: Finnish Transport Agency

Builder: Arctech Shipyard Helsinki

Year of Construction: 2015

Contract price:

Ship Type: Icebreaker

Operation Area: The Baltic Sea

Class Notation:

Ice Class: PC-4

Stem Angle: 23° L_{OA} 110 m

 L_{PP} L_{WL}

B_m

B_{WL} 24 m

Н

T_{design} 8 m

 $T_{\text{scantling}}$

Displacement

DWT 3000 t

Accommodation:

Open Water Speed: 17 kn

Main Engine Type/Power: Dual Fuel (LNG/Diesel), total 22 MW

Propulsion Type/Power: Three unit azimuth propulsion, total 19 MW

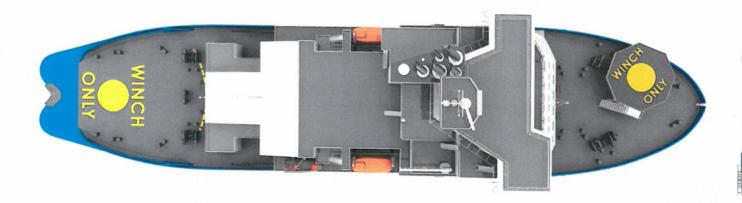
Propellers, Type, Dia:

Bollard Pull: 193 t ahead/187 t astern

BP/B_{WL}: 8,04 t/m **Prop. Power/Bwl**: 791 kW/m

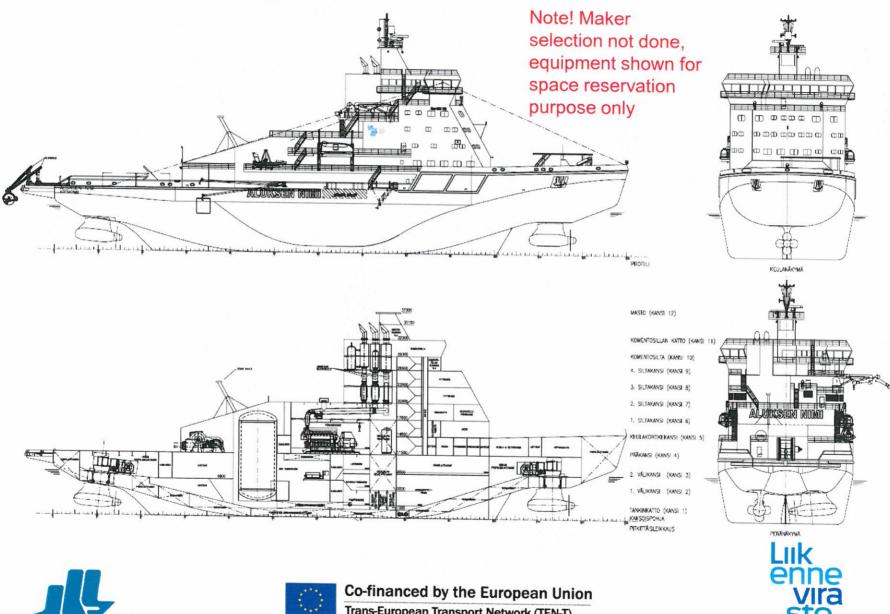
Ice Performance Ahead: 4 kn 1,8 m level ice, 6,8 kn in 1,27 m; 9,2 kn in 0,87 m

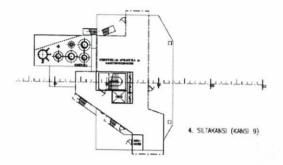
Ice Performance Astern: 5,5 kn in 1,27 m level ice, 8,7 kn in 0,87m

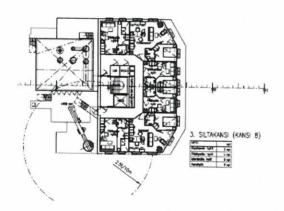

Other Icebreaking Characteristics:

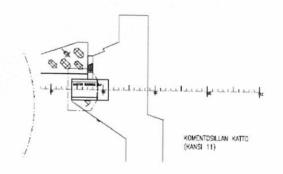
Miscellaneous: GA available

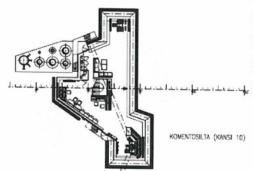
Aker Arctic



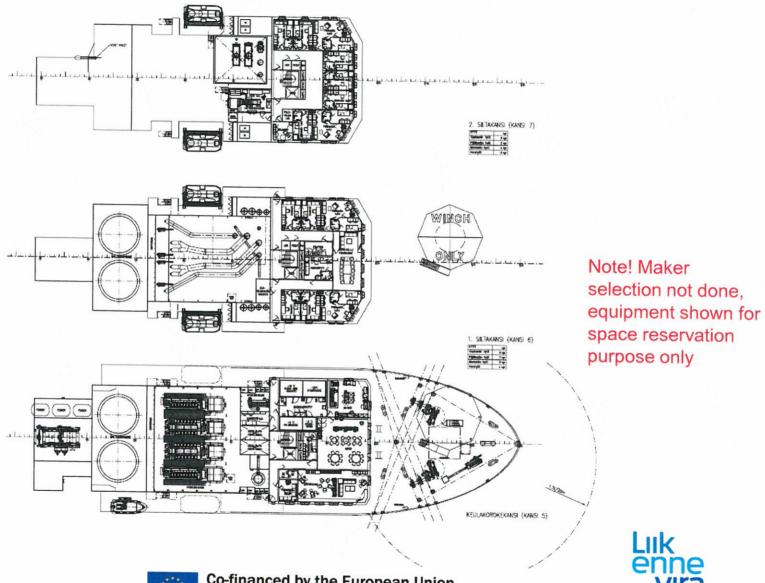

Aker Arctic

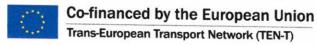


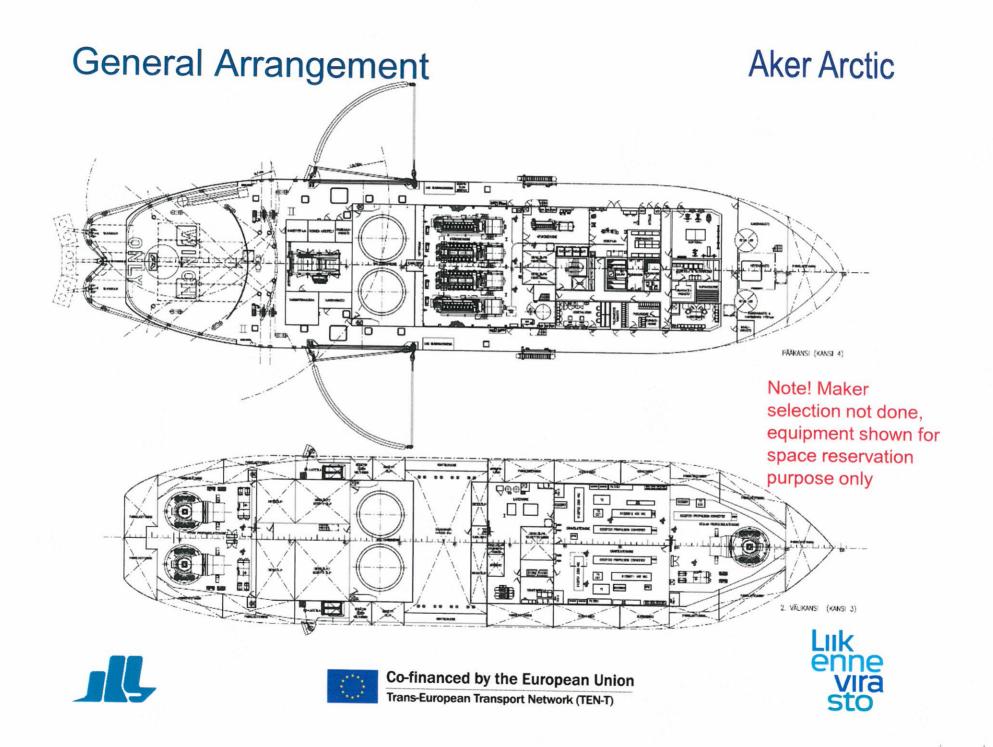




Aker Arctic


Note! Maker selection not done, equipment shown for space reservation upper purpose only




Aker Arctic

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS P-899, 17.2.2014/HE

Owner/Operator:	Russia's State Maritime Rescue Coordination Centre	
Builder:	Nordic Yards GmbH Germany	
Year of Construction:	2015	
Contract price:	150 million euros for two vessels	
Ship Type:	Rescue Icebreaker	
Operation Area:	Russian Arctic	
Class Notation:		
Ice Class:	Icebreaker 6	
Stem Angle:		
L _{OA}	86 m	
L _{PP}		
L _{WL}	19 m	
B _m B _{WL}	19111	
H		
T _{design}		
T _{scantling}		
Displacement		
DWT		
Accomodation:		
Open Water Speed:		
Main Engine Type/Power:		
Propulsion Type/Power:	2 x 3,5 MW Azipod ICE1400	
Propellers, Type, Dia:		
Bollard Pull:		
BP/B _{WL} Prop. Power/Bwl:		
•		
Ice Performance Ahead:		
Ice Performance Astern:		
Other Icebreaking Characteristics:		
Miscellaneous: -		

SHIP NAME: Sikuliaq

Owner/Operator: National Science Foundation/University of Alaska Fairbanks School of Fisheries

and Ocean Sciences

Builder: Marinette Marine Corporation, Wisconsin

Year of Construction: 2014

Contract price: 200 US million dollars

Ship Type: Research vessel

Operation Area: Alaska region

Class Notation:

Ice Class:

Stem Angle:

L_{OA} 80 m

 \boldsymbol{L}_{PP}

L_{WL} 72 m **B**_m 16 m

 \mathbf{B}_{WL}

H 9 m **T**_{design} 5,715 m

 $T_{\text{scantling}}$

Displacement 3724 t

DWT

Accommodation: 24 science berths, 20+2 crew berths

Open Water Speed: 14,2 kn

Main Engine Type/Power: 4 diesel engines, 4290 kW

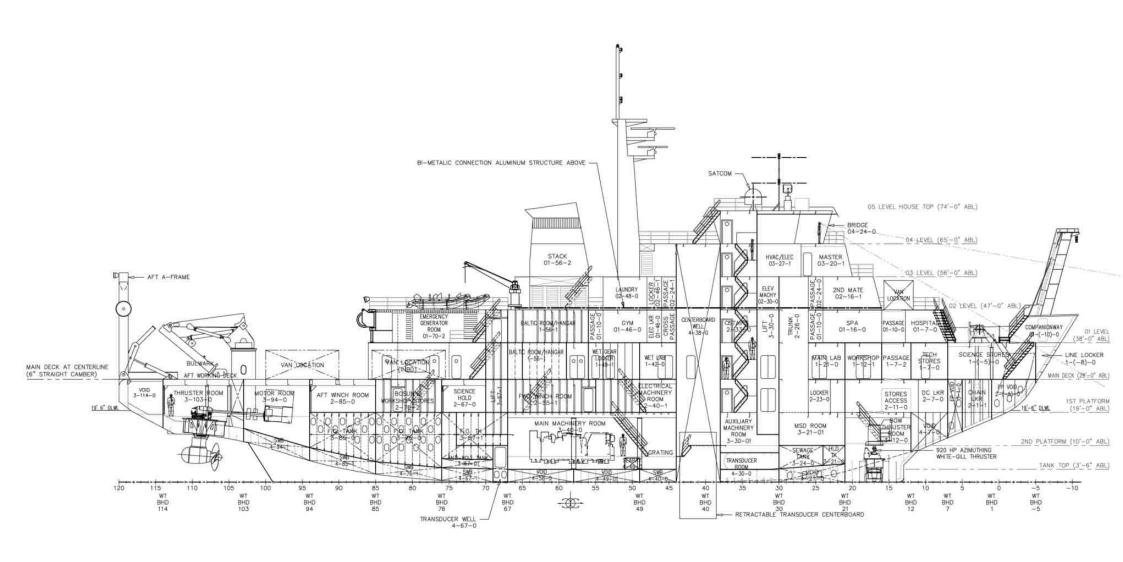
Propulsion Type/Power: Two Wärtsilä Icepod 2500 azimuth thrusters

Propellers, Type, Dia:

Bollard Pull: BP/B_{WL}:

Prop. Power/Bwl:

Ice Performance Ahead: 2 knots in 0,76 m ice


Ice Performance Astern:

Other Icebreaking Characteristics:

Miscellaneous: General arrangement available

References: Alaska Region Research Vessel (AARV) Contract Specifications. 2009

SHIP NAME: LK-25

Owner/Operator: FSUE Rosmorport

Builder: OOO Baltic Shipyard

Year of Construction: 2015

Contract price: 7,25 billion RUB

Ship Type: DAS Icebreaker

Operation Area:

Class Notation: KM Icebreaker 8 [2] AUT1-ICS OMBO FF"WS DYN-POS-2 EPP ANTI-ICE ECO-S

HELIDECK-H WINTERIZATION (-40) Special purpose ship

Ice Class: Icebreaker 8

Stem Angle:

L_{OA} 142 m

 \boldsymbol{L}_{PP}

 \mathbf{L}_{WL}

 \mathbf{B}_{m} 29 m

 \mathbf{B}_{WL}

 $\begin{array}{ll} \textbf{H} & \hspace{0.5cm} \textbf{16,2 m} \\ \textbf{T}_{\text{design}} & \hspace{0.5cm} \textbf{9,5 m} \end{array}$

 $\textbf{T}_{\text{scantling}}$

Displacement 22130 t

DWT

Accomodation: 38 crew, 90 specialized personnel

Open Water Speed:

Main Engine Type/Power:

Propulsion Type/Power: 2 x Azipod 7,5 MW + one FP 10 MW = 25 MW

Propellers, Type, Dia:

Bollard Pull: BP/B_{WL}:

Prop. Power/B(Bwl): 862 kW/m

Ice Performance Ahead: 2 kn in 2 m ice+20 cm snow
Ice Performance Astern: 2 kn in 2 m ice+20 cm snow

Other Icebreaking Characteristics:

Miscellaneous: -

References: Arctic Passion News: First Aker Arctic multi-screw DAS hybrid propulsion application. March 2013. P. 12

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS P-899, 17.2.2014/HE

"Aurora Slim"

Owner/Operator:		
Builder:		
Year of Construction:	Concept	
Contract price:	500 million euro estimate	
Ship Type:	DAS Polar research icebreaker with core drilling capability	
Operation Area:		
Class Notation:		
Ice Class:	Polar class 1	
Stem Angle:		
L _{OA}	163,3 m	
L_PP		
L _{WL}	152,4 m	
B _m	37,4 m	
B _{WL}	37,4 m	
Н	16,15 m	
T _{design}	11 m	
T _{scantling}		
Displacement	42000 t	
DWT	9100 t	
Accomodation:		
Open Water Speed:		
Main Engine Type/Power:	58,5 MW	
Propulsion Type/Power:	3 x 15 MW Azipods	
Propellers, Type, Dia:		
Bollard Pull: t		
BP/B _{wL} : t/m		
Prop. Power/Bwl:		
Ice Performance Ahead:		
Ice Performance Astern:		
Other Icebreaking Characteristics:		
Miscellaneous: -		

DATA SHEET OF ICEBREAKERS SUITABLE/OF INTEREST FOR BALTIC USE WINMOS P-899, 17.2.2014/HE

Owner/Operator:	Chinese State Oceanic Administration, The Chinese Arctic and Antarctic	
	Administration, Polar Research Institute of China	
Builder:		
Year of Construction:	Concept	
Contract price:		
Ship Type:	Icebreaking research vessel	
Operation Area:		
Class Notation:		
Ice Class:	PC3	
Stem Angle:		
LOA	122,5 m	
L_PP		
L _{WL}	117 m	
B _m	22,3 m	
B _{WL}	11.0	
H T	11,8 m 8,0 m	
T _{design}	8,0111	
T _{scantling} Displacement		
DWT		
Accomodation:	90 persons	
Open Water Speed:	15 kn	
Main Engine Type/Power:		
Propulsion Type/Power: Propellers, Type, Dia:	Twin azimuthing propeller drives, 2 x 7,5 MW	
Bollard Pull:		
BP/B _{WL} :		
Prop. Power/Bwl:		
Ice Performance Ahead:	2-3 kn in 1,5 m ice	
Ice Performance Astern:		
Other Icebreaking Characteristics:		
Miscellaneous: -		